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Microbes are dominant drivers of biogeochemical processes, yet drawing a global picture

of functional diversity, microbial community structure, and their ecological determinants

remains a grand challenge.We analyzed 7.2 terabases of metagenomic data from 243 Tara

Oceans samples from 68 locations in epipelagic and mesopelagic waters across the globe

to generate an ocean microbial reference gene catalog with >40 million nonredundant,

mostly novel sequences from viruses, prokaryotes, and picoeukaryotes. Using 139

prokaryote-enriched samples, containing >35,000 species, we show vertical stratification

with epipelagic community composition mostly driven by temperature rather than other

environmental factors or geography. We identify ocean microbial core functionality and

reveal that >73% of its abundance is shared with the human gut microbiome despite the

physicochemical differences between these two ecosystems.

M
icroorganisms are ubiquitous in the ocean

environment, where they play key roles in

biogeochemical processes, such as carbon

and nutrient cycling (1). With an esti-

mated 10
4
to 10

6
cells per milliliter, their

biomass, combined with high turnover rates and

environmental complexity, provides the grounds

for immense genetic diversity (2). These microor-

ganisms, and the communities they form, drive and

respond to changes in the environment, including

climate change–associated shifts in temperature,

carbon chemistry, nutrient and oxygen content, and

alterations in ocean stratification and currents (3).

With recent advances in community DNA shot-

gun sequencing (metagenomics) and computa-

tional analysis, it is now possible to access the

taxonomic and genomic content (microbiome)

of ocean microbial communities and, thus, to

study their structural patterns, diversity, and func-

tional potential (4, 5). The Sorcerer II Global Ocean

Sampling (GOS) expedition, for example, col-

lected, sequenced, and analyzed 6.3 gigabases

(Gb) of DNA from surface-water samples along

a transect from the Northwest Atlantic to the

Eastern Tropical Pacific (6, 7) but also indicated

that the vast majority of the global ocean micro-

biome still remained to be uncovered (7). Never-

theless, the GOS project facilitated the study of

surface picoplanktonic communities from these

regions by providing an ocean metagenomic data

set to the scientific community. Several studies

have demonstrated that such data could, in prin-

ciple, identify relationships between gene func-

tional compositions and environmental factors

(8–10). However, an extended breadth of sam-

pling (e.g., across depth layers, domains of life,

organismal-size classes, and around the globe),

combined with in situ measured environmental

data, could provide a global context and mini-

mize potential confounders.

To this end, Tara Oceans systematically col-

lected ~35,000 samples for morphological, genetic,

and environmental analyses using standardized

protocols across multiple depths at global scale,

aiming to facilitate a holistic study on how en-

vironmental factors and biogeochemical cycles

affect oceanic life (11). Here we report the initial

analysis of 243 ocean microbiome samples, col-

lected at 68 locations representing all main oceanic

regions (except for the Arctic) from three depth

layers, which were subjected to metagenomic Il-

lumina sequencing. By integrating these data with

those from publicly available ocean metagenomes

and reference genomes, we assembled and anno-

tated a reference gene catalog, which we use in

combination with phylogenetic marker genes

(12, 13) to derive global patterns of functional and

taxonomic microbial community structures. The

vast majority of genes uncovered in Tara Oceans

samples had not previously been identified, with

particularly high fractions of novel genes in the

Southern Ocean and in the twilight, mesopelagic

zone. By correlating genomic and environmental

features, we infer that temperature, which we de-

coupled from dissolved oxygen, is the strongest

environmental factor shaping microbiome compo-

sition in the sunlit, epipelagic ocean layer. Further-

more, we define a core set of gene families that are

ubiquitous in the ocean and differentiate variable,

adaptive functions from stable core functions; the

latter are compared between ocean depth layers

and to those in the human gut microbiome.

Ocean microbial reference gene catalog

To capture the genomic content of prevalent micro-

biota across major oceanic regions (Fig. 1A), Tara

Oceans collected seawater samples within the

epipelagic layer, both from the surface water

and the deep chlorophyll maximum (DCM) lay-

ers, as well as the mesopelagic zone (14). From 68

selected locations, 243 size-fractionated sam-

ples targeting organisms up to 3 mm [virus-enriched

fraction (<0.22 mm): n = 45; girus/prokaryote-

enriched fractions (0.1 to 0.22 mm, 0.22 to 0.45 mm,
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0.45 to 0.8 mm): n = 59; prokaryote-enriched

fractions (0.22 to 1.6 mm, 0.22 to 3 mm): n = 139]

were paired-end shotgun Illumina sequenced to

generate a total of more than 7.2 terabases (Tb),

29.6 T 12.7 Gb per sample (14), enabling compar-

ative analyses with the human gut microbiome for

which metagenomic data of the same order of

magnitude have been published {U.S. Human

Microbiome Project, phase I—stool [1.5 Tb; (15)]}

and the European Metagenomics of the Human

Intestinal Tract project [3.8 Tb; (16, 17)].

To generate a reference gene catalog [see also

(16, 17)], we first reconstructed the genomic con-

tent of Tara Oceans samples by metagenomic as-

sembly and gene prediction (18) and combined

these data with those from publicly available

ocean metagenomes and reference genomes (14).

Specifically, ~111.5 million (M) protein-coding nu-

cleotide sequences were predicted and clustered

at 95% nucleotide sequence identity with 24.4 M

sequences from other ocean metagenomes (14)

and 1.6 M sequences from ocean prokaryotic (n =

433) and viral (n = 114) reference genomes (14).

This resulted in a global Ocean Microbial Refer-

ence Gene Catalog (OM-RGC), which comprises

>40 M nonredundant representative genes from

viruses, prokaryotes, and picoeukaryotes (Fig. 1B).

Compared to a human gut microbial reference

gene catalog (16), the OM-RGC comprises more

than four times the number of genes, most of

which (59%) appear prokaryotic (Fig. 1B). Almost

28% of the genes could not be taxonomically an-

notated. A large fraction is, however, likely of viral

origin, because in size fractions targeting orga-

nisms smaller than 0.22 mm, 37% (SD = 9%) of the

profiled sequence data mapped to nonannotated

genes [see also (19)], whereas in prokaryote-

enriched samples, this fraction decreased to 9%

(SD = 2%). As expected, eukaryotic genes (3.3%)

include those from protists (unicellular eukary-

otes) but also from multicellular, larger organisms

whose gametes or fragmented cells may have been

sampled (14).

In total, 81.4% of the genes were exclusive to

Tara Oceans samples, with only 5.11 and 0.44%

overlapping with GOS sequences and reference

genomes, respectively (Fig. 1B), which highlights

the extent of the unexplored genomic potential

in our oceans. Rarefaction analysis showed that

the rate of new gene detection decreased to 0.01%

by the end of sampling (Fig. 1C), suggesting that

the abundant microbial sequence space appears

well represented, at least for the targeted size

ranges, sampling locations, and depths. Genes

found in only one sample amounted to 3.6% of

the OM-RGC, which may originate from localized

specialists.

To complement the work of Tara Oceans Con-

sortium partners who analyzed viral and protist-

enriched size fractions (19, 20) and integrated data

across domains of life (21, 22), we focused our

analyses on 139 prokaryote-enriched samples,

which included 63 surface water samples (5 m;

SD = 0 m), 46 epipelagic subsurface water samples

mostly from the DCM (71 m; SD = 41 m), and 30

mesopelagic samples (600 m; SD = 220 m). Using

this set, we revealed that gene novelty generally
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Fig. 1. Tara Oceans captures novel genetic diversity in the global ocean microbiome. (A) Geographic

distribution of 68 (out of >200 in total) representative TaraOceans sampling stations atwhich seawater samples

and environmental data were collected frommultiple depth layers. (B) Targeting viruses andmicrobial organisms

up to 3 mm in size, deep Illumina shotgun sequencing of 243 samples, followed by metagenomic assembly and

gene prediction, resulted in the identification of >111.5Mgene-coding sequences.The currently largest humangut

microbial reference gene catalog (16) was built with similar amounts of data but from a substantially higher

numberof samples (n= 1,267).Genes identified in our studywere clustered togetherwith >26Msequences from

publicly available data [external genes; see (14)] to yield a set of >40 M reference genes (top left), which equals

more than four times the number of genes in the human gut microbial reference gene catalog (top right). The

combined clustering of genes identified in Tara Oceans samples with those obtained from public resources

allowed us to annotate genes according to the composition of each cluster. For example, a gene was labeled as:

“TARA/GOS” if itsoriginal clustercontainedsequences frombothTaraOceansandGOSsamples.More than81%

of the genes were found only in samples collected by Tara Oceans. A breakdown of taxonomic annotations

(bottom left) shows that the reference gene catalog ismainly composed of bacterial genes (LUCAdenotes genes

that could not unambiguously be assigned to a domain of life). (C) Rarefaction curve of detected genes for 100-

fold permuted sampling orders shows only a small increase in newly detected genes toward the end of sampling.

Thesubplot comparessequencingdepth-normalized rarefactioncurves for 139prokaryoticoceansamples (black)

mapped to the prokaryotic subset of the OM-RGC (24.4 M genes) and the same number of random (100-fold

permuted) human gut samples (pink) mapped to a human gut gene catalog (16).The lower asymptote for the

human gut suggests that the ocean harbors a greater genetic diversity. (D) For the subset of 139 prokaryotic

samples analyzed, the fraction of detected genes that hadpreviously been available in public databases (blue) are

compared to those thatwerenewly identified in samples collectedbyTaraOceans (red).Thebreakdownbyocean

regionanddepths shows that theSouthernOceanand themesopelagic zonehadbeenvastly undersampledprior

to Tara Oceans. NA, not available. Abbreviations: MS, Mediterranean Sea; RS, Red Sea; IO, Indian Ocean; SAO,

South Atlantic Ocean; SO, Southern Ocean; SPO, South Pacific Ocean; NPO, North Pacific Ocean; NAO, North

Atlantic Ocean; GOS, Sorcerer II Global Ocean Sampling expedition; MetaG, genes of metagenomic origin; RefG,

genes fromreferencegenomesequences; LUCA, last universal commonancestor; SRF, surfacewater layer;DCM,

deep chlorophyll maximum layer; MIX, subsurface epipelagic mixed layer; MESO, mesopelagic zone.
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increased from surface to DCM waters and re-

mained relatively stable across ocean regions,

with overall about half of the genes being novel.

As exceptions to this pattern, we find in South-

ern Ocean (SO) and mesopelagic samples about

80 and 90% of novelty, respectively. In addition

to higher novelty in hitherto uncharted regions,

these patterns likely reflect the detection of rare

organisms by deep sequencing, although seasonal

and locational differences of sampling in relatively

well-studied regions may be additional contrib-

uting factors.

To put the degree of taxonomic novelty into

context, we extracted a total of >14 M metage-

nomic 16S ribosomal RNA gene (16S) tags [16S

mitags; (12)] and mapped these to operational

taxonomic units (OTUs) based on clustering of

reference 16S sequences (23) at 97% sequence

identity. This cutoff has been commonly used to

group taxa at the species level, although it may

rather represent clades somewhere between spe-

cies and genus level (24). The fraction of total 16S

mitags not matching any reference OTUs also

increased with depth but was on average only

5.5% (14). Thus, although the vast majority of

prokaryotic clades detected in TaraOceans meta-

genomes had already been captured by 16S se-

quencing, the OM-RGC now provides a link to

their genomic content.

Diversity and depth stratification

of the ocean microbiome

Given the global scale of Tara Oceans samples,

we assessed patterns of diversity and stratifying

factors of ocean microbial community composi-

tion. 16S mitags identified in our metagenomic

data set mapped to a total of 35,650 OTUs (2937

OTUs; SD = 585 OTUs), and taxonomic and phy-

logenetic diversity were highly (R
2
= 0.96) corre-

lated (14). The total richness estimate of 37,470 is

comparable to the numbers from a previous study,

which detected about 44,500 OTUs based on poly-

merase chain reaction (PCR)–amplified 16S rRNA

tags from 356 globally distributed pelagic samples

(25) that were collected in the context of the

International Census of Marine Microbes (ICoMM)

project (26). More than 93% of 16S mitags could

be annotated at the phylum level. We found that

typical members of Proteobacteria, including the

ubiquitous clades SAR11 (Alphaproteobacteria)

and SAR86 (Gammaproteobacteria), dominate

the sampled areas of the ocean both in terms

of relative abundance and taxonomic rich-

ness (27, 28). Cyanobacteria, Deferribacteres,

and Thaumarchaeota were also abundant, al-

though the taxonomic richness within these phyla

was smaller (Fig. 2). Photosynthetic cyanobacterial

taxa such as Prochlorococcus and Synechococcus

were detected in all mesopelagic samples and

contributed about 1% of the abundance (Fig. 2),

which is in line with previous reports suggest-

ing a role for cyanobacteria in sinking particle

flux (29).

To explore the overall variability in community

composition, we performed a principal coordi-

nate analysis (PCoA), which revealed that depth

explained 73% of the variance (PC1 in Fig. 3A).

This is consistent with a vertical stratification of

microbial taxa and viruses according to changes

in physicochemical parameters, such as light,

temperature, and nutrients (30, 31). Given this

vertical stratification, we further characterized

taxonomic and functional richness, between-

sample dissimilarity (b-diversity), total cell abun-

dance, and potential growth rates across three

depth layers. Our results revealed an increase in

both taxonomic and functional richness with

depth, whereas cell abundance, as measured by

flow cytometry, and potential maximum growth

rates (32) decreased with depth (Fig. 3B).

Although increasing species richness from the

surface to the mesopelagic has been reported

locally, e.g., in the Mediterranean Sea (33), our

findings emphasize the global relevance of this

pattern. The observed increase in taxonomic and

functional richness may reflect diversified spe-

cies adapted to a wider range of niches, such as

particle-associatedmicroenvironments in themeso-

pelagic zone (34). In addition, slower growth, due

SCIENCE sciencemag.org 22 MAY 2015 • VOL 348 ISSUE 6237 1261359-3

Fig. 3. Depth stratification of the ocean microbiome. (A) Principal coordinate (PC) analysis performed

on community composition dissimilarities (Bray-Curtis) of 139 prokaryotic samples based on 16S mitag

relative abundances shows that samples are significantly separated by their depth layer of origin, i.e.,

surface (SRF), deep chlorophyll maximum (DCM), or mesopelagic (MESO). Boxplots of the first PC

illustrate differences between depth layers. Differences between samples from SRF and DCM were

significant, but small compared to those with mesopelagic samples. Abbreviations for ocean regions are

the same as in Fig. 1. (B) For a matched sample set from 20 stations where SRF, DCM, and MESO were

sampled, calculations of within-sample species richness (top left) and between-sample diversities (top-

center; Bray-Curtis) and cell densities per millileter (top right) suggest an increase in species richness

and a decrease in cell density with depth (pairwise Mann-Whitney U-test: P < 0.001), whereas no signif-

icant trend was found for between-sample dissimilarity. For gene functional groups (bottom left and

center), richness increased with depth, whereas between-sample dissimilarity decreased. Minimum po-

tential generation time of microbial communities (bottom right) is predicted to be higher in the meso-

pelagic compared to the epipelagic (EPI).

Abundance Richness

Fig. 2.Taxonomic breakdown of Tara Oceans samples. A phylum-level (class-level for Proteobacteria)

breakdown of relative abundances is shown for all prokaryotic samples from three depth layers along

with the number of detected taxa at the OTU level. SRF, surface water layer; DCM, deep chlorophyll

maximum layer; MESO, mesopelagic zone.



tomore limited carbon sources in themesopelagic

zone, and higher motility have been suggested

to reduce predation by flagellates and ciliates,

as well as viral infection rates (35). Our meta-

genomic analysis nowprovidesmolecular support

for these models by identifying a significant (P <

0.001) enrichment of chemotaxis and motility

genes in the mesopelagic zone (see below).

Environmental drivers of

community composition

A key question in ocean microbial ecology is the

extent to which limited dispersal and historical

contingency on the one hand, and global disper-

sion combined with selection by environmental

factors on the other, are responsible for contem-

porary biogeographic patterns (4, 5). The relation-

ship between absolute latitude and biodiversity

is an example of such a pattern, albeit one that

is still controversial; while some authors found a

negative correlation (36), others reported maxima

in intermediate latitudinal ranges (10, 37). The

latter is supported by our findings (Fig. 4A), as

an increase in richness with temperature was

found from 4° to about 12°C, followed by a neg-

ative correlation for the remainder of the sam-

pled temperature range (up to 30°C). This is also

congruent with previous reports on oceanic groups

of eukaryotes (38). A modeling study predicted

season as a driver of biodiversity (39). For our

data, however, the association of richness with

temperature and latitude is robust to the con-

founding effect of seasonality (partial Mantel test,

P < 0.01), although more data are needed for a

rigorous statistical evaluation of such questions;

for example, by periodically sampling the ocean

across the globe on the same day (40). In addi-

tion to latitudinal biodiversity patterns, we found

that taxonomic community dissimilarity increased

up to about 5000 kmwithin an ocean region (Fig.

4B). Together, our data support biogeographic

patterns of microbial communities, in line with

previous studies (10, 36, 37).

To further investigate the underlying mech-

anisms, we tested whether samples were more

similar within than across ocean regions by

focusing on surface samples only. If dispersal

limitation rather than environmental selection

dominated, we would expect a higher similarity

within than across ocean regions. By contrast, if

environmental selection explained biogeographic

patterns, we would expect environmental factors

to correlate with community similarity. Previous

studies on selected ocean microbial taxa have

shown a strong impact of light and temperature

(41). For entire community assemblages, how-

ever, expectations are less clear. In a large-scale

meta-analysis, salinity has been suggested as the

major determinant across many (including ocean)

ecosystems and to exceed the influence of tem-

perature (42). In contrast, an analysis of func-

tional trait composition in ocean environments

suggested that temperature and light have stron-

ger effects than nutrients or salinity (10, 43).

A PCoA of taxonomic compositions of surface

samples does not show a clear separation by re-

gional origin, despite showing on average a higher

similarity of communities within than across

ocean regions (Fig. 5A). Instead, temperature was

found to strongly correlate with PC1 (R
2
= 0.76).

Thus, to verify the geographic independence of

this pattern and to identify environmental drivers

in our data set, we correlated distance-corrected

dissimilarities of taxonomic and functional com-

munity composition with those of environmental

factors (Fig. 5B). Overall, temperature and dis-

solved oxygen were the strongest correlates of

both taxonomic and functional composition in

the surface layer (Fig. 5B), while no significant

correlation was found for salinity. Nutrients were

only weakly correlated and, except for silicate,

after the removal of a few extreme locations with

very low temperatures, the correlations were not

statistically significant.

Finally, we tackled the challenge of disentan-

gling the high correlation between temperature

and dissolved oxygen (R
2
= 0.87) in surface

waters. To this end, we first used a machine

learning–based approach (44) to independently

model associations of each of these two factors

with taxonomic and functional composition with-

in surface samples (Fig. 6A). We then tested the

strength of these associations in DCM layers,

where the correlation between the two factors is

much weaker (R
2
= 0.16), which allowed us to
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Fig. 5. Environmental drivers of surface microbial community composition. (A) Principal coordinate

(PC) analysis of surface samples shows that samples are not clearly grouped by their regional origin

(top), but rather separated by the local temperatures as shown by the strong correlation (R2: 0.76)

between the first PC and temperature (bottom). (B) Pairwise comparisons of environmental factors are

shown, with a color gradient denoting Spearman’s correlation coefficients. Taxonomic [based on two

independent methods: mitags (12) and mOTUs (13)] and functional (based on biochemical KEGG modules)

community composition was related to each environmental factor by partial (geographic distance–

corrected) Mantel tests. Edge width corresponds to the Mantel’s r statistic for the corresponding distance

correlations, and edge color denotes the statistical significance based on 9,999 permutations.

Fig. 4. Latitudinal diversity and distance decay of ocean microbial communities. (A) Plotting spe-

cies richness against the temperature of sampling location shows an initial increase in richness up to

about 15°C followed by a decrease toward warmer waters. Richness is highest in mid-latitudinal ranges

rather than toward the equator.The color gradient denotes absolute latitudes (with increasing warmth of

color from poles to equator). Shape of symbols denotes whether a sample originated from the Northern

(circle) or Southern Hemisphere (square). (B) Pairwise microbial community dissimilarity (Bray-Curtis)

based on relative mitag OTU abundances increases with distance between sampling stations up to about

5000 km. Pairwise distances were calculated only within ocean regions.
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effectively decouple dissolved oxygen from tem-

perature. The surface-fitted model of temperature

continued to achieve high prediction accuracy

when applied at the DCM layers, whereas the

oxygen model could not be generalized across

depths. To illustrate the strength of these asso-

ciations, we show that temperature could be pre-

dicted with an explained variance of 86%, using

only species abundance as information (Fig. 6B).

These results were validated with data from the

GOS project (R
2
= 0.66) despite differences in sam-

pling and sequencing procedures between the

two studies (Fig. 6B).

Taken together, our data suggest that geo-

graphic distance plays a subordinate role and re-

veals temperature to be the major environmental

factor shaping taxonomic and functional micro-

bial community composition in the photic open

ocean. Thus, a global dispersal potential for micro-

organisms (45) and subsequent environmental

selection may, at least for some taxa, represent a

mechanism for driving patterns of microbial bio-

geography. At the same time, localized adapta-

tions by natural selection will lead to differences

in spatially distant populations of phylogeneti-

cally similar organisms, so that characterizing

these variations at strain-level resolution rep-

resents an important challenge for the future.

Core functional analysis

between ecosystems

The generation of nonredundant gene abundance

profiles from a large number (e.g., >100) of sam-

ples can be used to define a set of gene families,

as a proxy for gene-encoded functions, which are

ubiquitously found (core) in microbial communi-

ties. Such an analysis was performed for the human

gut (17), which represents a fundamentally differ-

ent microbial ecosystem (anoxic, host-associated,

dominated by heterotrophs). However, owing to

the lack of other large-scale, ecosystem-wide meta-

genomic data sets, it has been unknown howmany

of these core functions are shared with any other

ecosystem. Thus, we first mapped the OM-RGC to

known gene families, represented by clusters of

orthologous groups [OGs, (46)] and selected pro-

karyotic genes to ensure comparability between

the data sets. In total, we detected 39,246 OGs

(19,524 OGs per sample; SD = 2682 OGs). Of those,

the number of shared OGs rapidly decreased with

sample size, reaching a minimum of 5755 ocean

core OGs that were present in all (n = 139)

prokaryote-enriched samples (Fig. 7A). Overall,

we found that 40% of these ocean core OGs were

of unknown function, compared to only 9% of

the human gut core OGs (Fig. 7B).

We also sought to determine the overlap of

core functions between the two ecosystems and

to identify differentially abundant core functional

categories (47), and contrast their relative im-

portance in each of them (Fig. 7C). The ocean

core contained almost twice as many OGs as the

gut core, which may reflect the sampling of a

greater number and higher complexity of niches

in the ocean ecosystem than in the mostly anoxic,

thermally stable human gut. However, despite

large physicochemical differences between the

two ecosystems, we found that most of the pro-

karyotic gene abundance (73% in the ocean; 63%

in the gut) can be attributed to a shared functional

core. Significant differential abundances between

the two ecosystems were found across many func-

tional categories. Most notably, those for defense

mechanisms, signal transduction, and carbohy-

drate transport and metabolism were considera-

bly more abundant in the gut, whereas those for

transport mechanisms in general (coenzyme, lipid,

nucleotide, amino acids, secondary metabolites)

and energy production (including photosynthesis)

were more abundant in the ocean (Fig. 7C).

Functional variability across ocean

depths and regions

Functional redundancy across different taxa in

microbial communities has been suggested to

confer a buffering capacity for an ecosystem in

scenarios of biodiversity loss (48). When con-

trasting taxonomic and functional variability

in the ocean, we indeed found high taxonomic

variability (even at phylum level) accompanied

by relatively stable distributions of gene abun-

dances summarized into functional categories

(47) (Fig. 8A). This is also congruent with previous

reports for the human gut, where gene abun-

dances of metabolic pathways were found to be

evenly distributed across samples, while tax-

onomic compositions varied markedly between

subjects (49). Thus, despite the presumably greater

environmental complexity in the ocean, the con-

gruent functional redundancy observed in both

ecosystems may be indicative of an ecosystem-

independent property of microbial communities.

We next differentiated ocean core from non-

core OGs, as the latter are more relevant for

environment-specific adaptations. Within the

ocean, 67% (SD = 5%) of the total gene abun-

dance was attributed to ocean core OGs. After

removing these and the 29% (SD = 5%) of gene

abundance from genes that were not assigned

to any OG, 4% (SD = 1%) remained as the non-

core fraction. The abundance distribution among

these noncore OGs, of which the largest fraction

encode unknown functions, displayed a much

greater variability across samples even when

summarized into functional categories (Fig. 8A).

Thus, in addition to the stable abundance dis-

tribution of core functional processes, as reported

here and for human body habitats (49), func-

tional variation similar in scale to that of the

phylogenetic one can be detected when focusing

on noncore, potentially adaptive gene families.

As an example for such an environmental adapt-

ation, we found an increase in lipid metabolism in

oxygen minimum zones of the Eastern Pacific and

Northern Indian Ocean (Fig. 8A).

Finally, to globally investigate the functional

basis for the large community structural differences

between the epipelagic layer and mesopelagic

zone (Fig. 3A), we defined depth-specific core

OGs using the approach introduced above. Un-

expectedly, we found that the epipelagic core is

almost completely contained in the mesope-

lagic core (Fig. 8B). When testing between-depth

functional differences (Fig. 8B), we observed an

enrichment of aerobic respiration genes in the ven-

tilated mesopelagic zone, which is coherent with

the finding that the mesopelagic zone is a key
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Fig. 6. Temperature as main environmental driver for microbial community composition in the epi-

pelagic layer. (A) The strength of association between (meta)genomic and environmental data was

tested by statistical models that were first generated with a subset of data for training and then validated

on the remaining data. The prediction accuracy was used as a measure for the strength of association.

Models that were trained on subsets of taxonomic data from surface water (SRF) samples could predict

with high accuracy temperature and dissolved oxygen of samples used for validation (left). Models

trained with subsets of taxonomic data from deep chlorophyll maximum (DCM) samples could predict

temperature with high accuracy, but could predict dissolved oxygen with only moderate accuracy

(middle). To demonstrate across-depth conservation of associations, we show that models trained on

data from SRFsamples could highly predict temperature, but failed to predict dissolved oxygen in DCM

samples. (B) To illustrate prediction accuracy, and thus, strength of association between taxonomic

composition (using 16S mitag abundances) and temperature, we show that in situ measured tem-

perature could be predicted with 86% explained variance.The red diagonal shows the theoretical curve

for perfect predictions. Sanger sequencing reads from the GOS project were used to calculate relative

genus abundance tables. Using temperature prediction models trained at genus level using Tara

Oceans data, we show (inset) that the results could be validated at relatively high accuracy given the

large differences in sampling and sequencing methods between these two studies.



remineralization site of exported production (50).

Flagellar assembly and chemotaxis were also en-

riched in mesopelagic samples, which is in con-

trast to previous findings (51) but congruent with

the model that motility reduces grazing mor-

tality in planktonic bacteria (52). In addition,

these motility traits are potentially of great uti-

lity for bacteria in the dark ocean to colonize

sinking particles or marine snow aggregates.

Our taxonomic analysis (Fig. 2), combined with

the detection of photosynthesis genes in the

mesopelagic zone (Fig. 8B), indeed suggests

microbial sedimentation from the epipelagic

layer into the mesopelagic zone. Moving among

aggregates to exploit nutrient patches and poten-

tially new niches (34) may drive the diversification

of mesopelagic zone–adapted microbial popula-

tions (53). In the future, matching Tara Oceans

metatranscriptomic data should help in differ-

entiating active from dead sinking biomass and

give further insights into how microbial com-

munities contribute to remineralization and car-

bon export into the ocean interior.

Conclusions

Tara Oceans has generated, in addition to global

biodiversity resources for larger organismal size

spectra (20), the OM-RGC, which makes ocean

microbial genetic diversity accessible for various

targeted analyses. Here we analyzed prokaryote-

enriched size fractions, whereas related papers

studied viral ecology (19), cross-kingdom species

interactions (21), and planktonic community

connectivity across an ocean circulation choke-

point (22). Despite some limitations in the sam-

pled organismal size range, oceanic depth layers,

and temporal resolution, our approach generated

an ecosystem-wide data set that will be useful for

improving predictive models of the ocean. Finding

that temperature drives microbial community var-

iation and revealing the high functional redun-

dancy in ocean microbial communities at global

scale have wide-ranging implications for poten-

tial climate change–related effects. The Tara Oceans

data set supports progress not only toward a ho-

listic understanding of the ocean ecosystem but

also of microbial communities in general, by facil-

itating comparative analyses between ecosystems.

Materials and methods

Sample and environmental

data collection

From 2009 to 2013, morphological, genetic, and

environmental data were collected at >200 sam-

pling stations across all major oceanic provinces

during the Tara Oceans expedition. The sam-

pling strategy and methodology are described in

(54–57). Sampling and enumeration of hetero-

trophic prokaryotes, phototrophic picoplankton,

and small eukaryotes by flow cytometry followed

previously described procedures, which are sum-

marized in (58). Sample provenance is described

in table S1 and in (55). Sample-associated envi-

ronmental data and sample-associated biodi-

versity indexes were inferred at the depth of

sampling (56, 57), and additional information

is available at (14).

Extraction and sequencing

of metagenomic DNA

Metagenomic DNA from prokaryote and girus-

enriched size fraction filters, and from precipi-

tated viruses, was extracted as described in (12),

(59), and (19), respectively. DNA (30 to 50 ng)

was sonicated to a 100– to 800–base pair (bp)

size range. DNA fragments were subsequently

end repaired and 3′-adenylated before Illumina

adapters were added by using the NEBNext Sam-

ple Reagent Set (New England Biolabs). Ligation

products were purified by Ampure XP (Beckmann

Coulter), and DNA fragments (>200 bp) were PCR-

amplified with Illumina adapter-specific primers

and Platinum Pfx DNA polymerase (Invitrogen).

Amplified library fragments were size selected

(~300 bp) on a 3% agarose gel. After library pro-

file analysis using an Agilent 2100 Bioanalyzer

(Agilent Technologies, USA) and quantitative PCR

(MxPro, Agilent Technologies, USA), each library

was sequenced with 101 base-length read chemis-

try in a paired-end flow cell on Illumina sequenc-

ing machines (Illumina, USA).

Metagenomic sequence assembly

and gene predictions

Using MOCAT (version 1.2) (18), high-quality (HQ)

reads were generated (option read_trim_filter;

solexaqa with length cut-off 45 and quality cut-

off 20) and reads matching Illumina sequencing

adapters were removed (option screen_fastafile

with e-value 0.00001). Screened HQ reads were

assembled (option assembly; minimum length

500 bp), and gene-coding sequences [minimum

length 100 nucleotides (nt)] were predicted on

the assembled scaftigs [option gene_prediction;
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Fig. 7. Ocean versus human gut core orthologous groups. (A) The number of orthologous groups

(OGs) that were shared among randomly selected sets of samples with sizes ranging from 1 to 139 was

computed. With increasing sample size, the number of shared orthologous groups decreased first

rapidly, then more gradually to a minimum of 5755 OGs at 139 samples, which was considered the set of

ocean core OGs. Purple boxplots show the data for all OGs; blue boxplots show the data for OGs of

known function. (B) Comparative statistics between ocean and human gut core OGs, showing that for a

large fraction of ocean core OGs (40%), the functionality is unknown, which is in stark contrast to the

human gut ecosystem (9%). Ocean core OGs are further subdivided into groups of OGs that are

commonly (>50%), uncommonly (10% to 50%), or rarely (<10%) found in marine reference genomes.

(C) A comparison of ocean and human gut core OGs (left) shows a large overlap of functions between

these two fundamentally different ecosystems both qualitatively and quantitatively. The bar chart (right)

displays a comparison of gene abundance summarized into OG functional categories to illustrate

functional enrichments. Asterisks denote Mann-Whitney U-test results (**P < 0.01, ***P < 0.001).
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MetaGeneMark (version 2.8) (60)], generating

a total of 111.5 M gene-coding sequences (14).

Assembly errors were estimated by testing for

colinearity between assembled contigs and genes

and unassembled 454 sequencing reads by using

a subset of 11 overlapping samples (58). From

this analysis, we estimate that 1.5% of contigs

had breakpoints and thus may suffer from er-

rors (14). This error rate is more than a factor

of 6.5 less than previous estimates of contig

chimericity in simulated metagenomic assem-

blies (9.8%) with similar N50 values (61).

Generation of the ocean microbial

reference gene catalog

Predicted gene-coding sequences were combined

with those identified in publicly available ocean

metagenomic data and reference genomes: 22.6 M

predicted genes from the GOS expedition (6, 7),

1.78M from Pacific Ocean Virome study (POV) (62),

14.8 thousand from viral genomes from theMarine

Microbiology Initiative (MMI) at the Gordon &

Betty Moore Foundation (14), and 1.59 M from

433 ocean microbial reference genomes (14). The

reference genomes were selected by the following

procedure: An initial set of 3496 reference ge-

nomes (all high-quality genomes available as of

23 February 2012) was clustered into 1753 species

(24), from each of which we selected one repre-

sentative genome. After mapping all HQ reads

against these genomes, a genome was selected if

the base coverage was >1× or if the fraction of

genome coverage was >40% in at least one sam-

ple. In addition, we included prokaryotic ge-

nomes for which habitat entries matched the

terms “Marine” or “Sea Water” in the Integrated

Microbial Genomes database (63) or if a ge-

nome was listed under the Moore Marine Mi-

crobial Sequencing project (64) as of 29 July

2013. Finally, we applied previously established

quality criteria (24), resulting in a final set of

433 ocean microbial reference genomes (14). For

data from GOS, POV, and MMI, assemblies were

downloaded from the CAMERA portal (64). A

total of 137.5 M gene-coding nucleotide sequences

were clustered by using the same criteria as in

(16); i.e., 95% sequence identity and 90% alignment

coverage of the shorter sequence. The longest se-

quence of each cluster was selected, and after re-

moving sequences <100 nt, we obtained a set of

40,154,822 genes [i.e., nonredundant contiguous

gene-coding nucleotide sequences operationally

defined as “genes”; see also (16, 17)] that we refer

to as the Ocean Microbial Reference Gene Catalog

(OM-RGC).

Taxonomic and functional annotation

of the OM-RGC

We taxonomically annotated the OM-RGC using

a modified dual BLAST-based last common an-

cestor (2bLCA) approach as described in (58). For

modifications, we used RAPsearch2 (65) rather

than BLAST to efficiently process the large data

volume and a database of nonredundant protein

sequences from UniProt (version: UniRef_2013_07)

and eukaryotic transcriptome data not repre-

sented in UniRef. The OM-RGC was functionally

annotated to orthologous groups in the eggNOG

(version 3) and KEGG databases (version 62) with

SmashCommunity (version 1.6) (46, 66, 67). In

total, 38% and 57% of the genes could be anno-

tated by homology to a KEGGortholog group (KO)

or an OG, respectively. Functional modules were

defined by selecting previously described key

marker genes for 15 selected ocean-related pro-

cesses, such as photosynthesis, aerobic respiration,

nitrogen metabolism, and methanogenesis (14).

Taxonomic profiling using 16S tags and meta-

genomic operational taxonomic units 16S frag-

ments directly identified in Illumina-sequenced

metagenomes (mitags) were identified as described

in (12). 16S mitags were mapped to cluster cen-

troids of taxonomically annotated 16S reference

sequences from the SILVA database (23) (release

115: SSU Ref NR 99) that had been clustered at

97% sequence identity with USEARCH v6.0.307

(68). 16S mitag counts were normalized by the

total sum for each sample. In addition, we iden-

tified protein-coding marker genes suitable for

metagenomic species profiling using fetchMG

(13) in all 137.5 M gene-coding sequences and

clustered them into metagenomic operational

taxonomic units (mOTUs) that group organisms

into species-level clusters at higher accuracy than

16S OTUs as described in (13, 24). Relative abun-

dances of mOTU linkage groups were quantified

with MOCAT (version 1.3) (18).

Functional profiling using the OM-RGC

Gene abundance profiles were generated by map-

ping HQ reads from each sample to the OM-RGC

(MOCAT options screen and filter with length

and identity cutoffs of 45 and 95%, respectively,

and paired-end filtering set to yes). The abun-

dance of each reference gene in each sample was

calculated as gene length–normalized base and

insert counts (MOCAT option profile). Functional

abundances were calculated as the sum of the

relative abundances of reference genes, or key
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Fig. 8. Functional structuring of the ocean microbiome. (A) Phylum-level (class-level for Proteobac-

teria) taxonomic variability is higher (top, median relative SD = 65%) relative to the functional composition

(OG functional categories) of ocean microbial samples (center, median relative SD = 7%). Removal of

functions that are ubiquitous in the ocean environment reveals the variable, noncore fraction (bottom,

median relative SD = 47%), which amounts on average to 4% of the total gene abundance. Red triangles

on x axis highlight mesopelagic samples collected in oxygen minimum zones of the Indian Ocean and

Eastern Pacific, which show increased levels of lipid metabolism in noncore functions. (B) Venn diagram

(left) showing that core OGs in the epipelagic layer of the ocean are almost completely contained in

mesopelagic core OGs (left). The bean charts (right) display differential abundances of marker genes

(based on KO annotations) for selected functional processes in the ocean. Asterisks denote Mann-Whitney

U test results (***P < 0.001).



marker genes (14), annotated to different func-

tional groups (OGs, KOs, and KEGG modules).

For each functional module, the abundance was

calculated as the sum of relative abundances of

marker KOs normalized by the number of KOs.

For comparative analyses with the human gut

ecosystem, we used the subset of the OM-RGC that

was annotated to Bacteria or Archaea (24.4 M

genes). Using a rarefied (to 33 M inserts) gene

count table, an OG was considered to be part of

the ocean microbial core if at least one insert from

each sample was mapped to a gene annotated

to that OG. Samples from the human gut ecosys-

tem were processed similarly, and a list of all OGs

that were defined in either the ocean or the gut as

core is provided in (14).

Microbial community structural

analyses and prediction of

minimum generation times

16S mitag counts were rarefied 100 times to the

minimum number of total 16S mitags per sample

(39,410), and OTU richness and Chao1 richness

estimators were calculated as the mean of all

rarefactions (14). A phylogenetic tree of 16S mitags

was calculated from full-length 16S sequences,

by using parts of the LotuS 16S pipeline (69). This

phylogenetic tree was midpoint rooted in R and

used with the mitag abundance matrix rarefied to

39,000 reads per sample to calculate Faith’s phy-

logenetic diversity (70) as the mean value of five

repetitions (14). Similarly, OG richness was com-

puted as the average of 10 rarefactions (14). Com-

munity growth potential from genomic traits was

estimated as the average minimum generation

time of the organisms present in the sample,

weighted by their abundance, as previously de-

scribed (32).

Distance correlations between genomic

and environmental data

We computed pairwise distances between sam-

ples on the basis of (i) relative abundances of

taxonomic (16S mitags and mOTUs) and gene

functional compositions (at KEGG module level)—

the compositional data; (ii) in situ measurements

of physicochemical data—the environmental data;

and (iii) geographic location of sampling stations—

the geographic data. Data from the three south-

ernmost stations were removed from the analysis,

as these stations are outside the range of the rest

of the data in parameters such as temperature,

oxygen, and nutrients. For compositional data,

we applied a logarithmic transformation to rela-

tive abundances using the function log10(x + x0),

where x is the original relative abundance and x0
is a small constant, and x0 < min(x).

We applied an additional low-abundance filter,

which removed features whose relative abun-

dance did not exceed 0.0001 in any sample. En-

vironmental data were transformed to z-scores

before calculating distances. We used Euclidean

distances for compositional and environmental

data and Haversine distances for geographic data.

Given these distance matrices, we computed par-

tial Mantel correlations between compositional

and environmental data given geographic dis-

tance (9,999 permutations) using the vegan R

software package. Partial Mantel tests were also

performed between species richness and both

temperature and latitude, while controlling for

season.

Statistical modeling and

correlation analysis

Compositional data (see above) were normal-

ized to ranks across samples and then used to

learn a regression model to predict environ-

mental measures. In particular, we fitted an

elastic net model (44) using inner cross-validation

to set the hyperparameters as implemented by

the scikit-learn Python package (71). For spatial

autocorrelation-corrected cross-validation, sam-

ples from each ocean basin were iteratively held

out for testing on a model learned from the rest

of the samples.

As a measure of association between the en-

vironmental parameter and the compositional

data, we computed the cross-validated R
2
(also

known as Q
2
) (72), defined as 1 − ∑

ðyi −
⌢

yiÞ
2

ðyi − yiÞ
2
,

where yi is the value of the parameter for sam-

ple i,
⌢

y i is the prediction for that same sample

(obtained by held-out cross-validation), and y is

the overall mean (the summation runs over all

the samples). To disentangle effects of tempera-

ture and oxygen, we trained models on surface

samples, which were then evaluated in DCM sam-

ples. Again, to avoid spatial autocorrelation, cross-

validation by ocean basin was used. An external

cross-validation was performed by classifying GOS

reads using the RDP database (73). Only genera

detected in both studies were considered. Because

of the lower and varying sequencing depth of the

GOS data, for each GOS sample, we downsampled

Tara Oceans data to match the corresponding se-

quencing depth and learned a model based on

this downsampled data set. This model was based

on the presence or absence of the taxa (which

was modeled by passing a binary input matrix

to the elastic net fitting routines).
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