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Abstract

Planktonic foraminifera (Rhizaria) are ubiquitous marine pelagic protists producing calcareous shells with con-

spicuous morphology. They play an important role in the marine carbon cycle, and their exceptional fossil record

serves as the basis for biochronostratigraphy and past climate reconstructions. A major worldwide sampling effort

over the last two decades has resulted in the establishment of multiple large collections of cryopreserved individ-

ual planktonic foraminifera samples. Thousands of 18S rDNA partial sequences have been generated, represent-

ing all major known morphological taxa across their worldwide oceanic range. This comprehensive data coverage

provides an opportunity to assess patterns of molecular ecology and evolution in a holistic way for an entire

group of planktonic protists. We combined all available published and unpublished genetic data to build PFR2,

the Planktonic foraminifera Ribosomal Reference database. The first version of the database includes 3322 refer-

ence 18S rDNA sequences belonging to 32 of the 47 known morphospecies of extant planktonic foraminifera, col-

lected from 460 oceanic stations. All sequences have been rigorously taxonomically curated using a six-rank

annotation system fully resolved to the morphological species level and linked to a series of metadata. The PFR2

website, available at http://pfr2.sb-roscoff.fr, allows downloading the entire database or specific sections, as well

as the identification of new planktonic foraminiferal sequences. Its novel, fully documented curation process inte-

grates advances in morphological and molecular taxonomy. It allows for an increase in its taxonomic resolution

and assures that integrity is maintained by including a complete contingency tracking of annotations and assuring

that the annotations remain internally consistent.
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Introduction

Despite their ubiquity and the critical role they play in

global biogeochemical cycles, unicellular eukaryotes

(protists) remain the most poorly known domain of life

(e.g. Pawlowski et al. 2012). Because of their extreme

morphological and behavioural diversity, the study of

even relatively narrow lineages requires a high degree of

taxonomic expertise (e.g. Guillou et al. 2012; Pawlowski

and Holzmann, 2014). As a result, the knowledge of pro-

tistan ecology and evolution is limited by the small num-

ber of taxonomists, resulting in scarcity of taxonomically

well-resolved ecological data. As an alternative

approach, numerous studies have demonstrated the

potential of identification of protists by means of short

DNA sequences or barcodes (e.g. Saunders 2005; Sher-

wood & Presting 2007; Hollingsworth et al. 2009; Nasso-

nova et al. 2010; Pawlowski & Lecroq 2010; Stern et al.

2010; Hamsher et al. 2011; Schoch et al. 2012), both at the

single-cell and metacommunity levels (e.g. Sogin et al.

2006; Logares et al. 2014). Such barcoding/metabarcod-

ing approaches critically rely on the fidelity of the mar-

ker gene with respect to specificity (avoiding ambiguity

in identification), comprehensiveness (assuring all taxa

in the studied group are represented in the reference bar-

code database) and accuracy (assuring that barcode

assignments are consistent with a coherent, phenotypic

taxonomic framework; e.g. Zimmermann et al. 2014).

These three prerequisites are rarely found in protists,

where classical morphological taxonomy is often chal-

lenging, DNA extraction and sequencing from a single

cell is prone to contamination, and a large portion of the

diversity in many groups remains unknown (e.g. Mora

et al. 2011). In this respect, planktonic foraminifera repre-

sent a rare exception.

Planktonic foraminifera are ubiquitous pelagic marine

protists with reticulated pseudopods, clustering within

the Rhizaria (Nikolaev et al. 2004). The group is marked

by a rather low number of extant morphospecies (47;

Hemleben et al. 1989), which can be distinguished using

structural characteristics of their calcite shells. Their glo-

bal geographic distribution, seasonal dynamics, vertical

habitats and trophic behaviour have been thoroughly

documented by analyses of plankton hauls (e.g. B�e &

Hudson 1977), sediment trap series (e.g. �Zari�c et al. 2005)

and thousands of surface sediment samples across the

world oceans (e.g. Kucera et al. 2005). Their outstanding

preservation in marine sediments resulted in arguably

the most complete fossil record, allowing comprehensive

reconstruction of the evolutionary history of the group

(Aze et al. 2011). Over the last two decades, the morpho-

taxonomy and phylogeny of the group have been largely

confirmed by molecular genetic analyses (e.g. Aurahs

et al. 2009a) based on the highly informative, ~1000-bp
fragment at the 30end of the 18S rDNA gene. These

analyses confirmed that the morphological characters

used to differentiate planktonic foraminifera taxa are

phylogenetically valid both at the level of morphological

species and at the level of higher taxa. The studied gene

fragment contains six hypervariable expansion seg-

ments, some unique to foraminifera, providing excellent

taxonomic resolution (Pawlowski & Lecroq 2010). Analy-

ses of this fragment revealed the existence of genetically

distinct lineages within most of the morphospecies,

which likely represent reproductively isolated units

(Darling et al. 1996, 1997, 1999, 2000, 2003, 2004, 2006,

2007, 2009; Darling & Wade 2008; Wade et al. 1996; de

Vargas et al. 1997, 1999, 2001, 2002; de Vargas & Paw-

lowski 1998; Stewart et al. 2001; Ujii�e et al. 2008; Aurahs

et al. 2009b, 2011; Morard et al. 2009, 2011, 2013; Ujii�e &

Lipps 2009; Ujii�e et al. 2012; Seears et al. 2012; Weiner

et al. 2012, 2014; Quill�ev�er�e et al. 2013, Andr�e et al. 2014).

To assess the ecology and biogeography of such cryptic

species, large numbers of rDNA sequences from single-

cell extractions collected across the world oceans have

been generated for most morphospecies (Fig. 1). Due to

this extensive single-cell rDNA sequencing, the genetic

and morphological diversity of planktonic foraminifera

have been linked together to a degree that now allows

for transfer of taxonomic expertise. The knowledge of

the genetic and morphological taxonomy of the group

allows the establishment of an exceptionally comprehen-

sive reference genetic database that can be further used

to interpret complex data from plankton metagenomic

studies with a high level of taxonomic resolution.

Because planktonic foraminifera are subject to the same

ecological forcing as other microplankton, including the

dominance of passive transport in a relatively unstruc-

tured environment, huge population sizes and basin-

scale distribution of species, they can potentially serve as

a model for the study of global ecological patterns in

other groups of pelagic protists, whose diversity remains

largely undiscovered (Mora et al. 2011).

By early 2014, 1787 partial 18S rDNA sequences from

single-cell extractions of planktonic foraminifera were

available in public databases. However, their NCBI tax-

onomy is often inconsistent, lacking standardization. It

includes (and retains) obvious identification errors, as

discussed by Aurahs et al. (2009a) and Andr�e et al.

(2014), and their annotation lacks critical metadata. In

addition, an equivalent number of rDNA sequences not

deposited in public databases have been generated by

the co-authors of the present study. Collectively, the

existing rDNA sequences from single cells collected

throughout the world oceans cover the entire geographic

and taxonomic range of planktonic foraminifera. This
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collection unites the current morphological, genetic, eco-

logical and biogeographical knowledge of the group and

may serve as a Rosetta Stone/Philae Obelisk for interpreting

metabarcoding data (Pawlowski et al. 2014). To pave the

way for future exploitation of this resource, we com-

bined all published and unpublished planktonic forami-

nifera rDNA sequence data and curated the resulting

database with a semi-automated bioinformatics pipeline.

The resulting Planktonic foraminifera Ribosomal Reference

database (PFR2) is a highly resolved, fully annotated and

internally entirely consistent collection of 18S rDNA

sequences of planktonic foraminifera, aligned and evalu-

ated in a way that facilitates, among others, direct assess-

ment of barcoding markers.

Materials and methods

Primary database assembly

A total of 1787 18S rDNA sequences of planktonic Fora-

minifera were downloaded from the GenBank query

portal (http://www.ncbi.nlm.nih.gov/; release 201) on

the 14th of May 2014. The taxonomic path and metadata

for these sequences were extracted from NCBI and
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Fig. 1 Sampling Map. Location of the 460 oceanic stations sampled over 20 years for single-cell genetic studies of planktonic foramini-

fera. Each symbol corresponds to a scientific cruise or near shore collection site. Cruise names and dates of the collection expeditions

are indicated in the legend. Grey shading shows ocean bathymetry.
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supplemented by information in original papers when

available. The metadata associated with each sequence

consisted of: (i) their organismal origin (specimen vou-

cher, taxonomic path, infraspecific genetic type assign-

ment), (ii) their methodological origin (direct sequencing

or cloning) and (iii) their spatio-temporal origin (geo-

graphic coordinates, depth and time of collection). Meta-

data were described using standard vocabularies and

data formats. For 47 sequences, the coordinates of the

collection site could not be recovered, in which case the

locality was described in words (Table S1, Supporting

information).

We next compiled all unpublished 18S rDNA

sequences generated by the co-authors of this study and

linked them with the same suite of metadata. These

sequences originate from single-cell extractions of plank-

tonic foraminifera collected by stratified or nonstratified

plankton net hauls, in situ water pumping, as well as

SCUBA diving. After collection, the specimens were

individually picked under a stereomicroscope, cleaned,

taxonomically identified and transferred into DNA

extraction buffer or air-dried on cardboard slides and

stored at �20 or �80 °C. DNA extractions were per-

formed following the DOC (Holzmann & Pawlowski

1996), the GITC* (Morard et al. 2009) or the Urea (Weiner

et al. 2014) protocols. Sequences located at the 30 end of

the 18S rDNA were obtained following the methodology

described in de Darling et al. (1996, 1997), de Vargas et al.

(1997), Aurahs et al. (2009b), Morard et al. (2011) and

Weiner et al. (2014). A total of 820 new planktonic fora-

miniferal sequences were analysed and annotated for

this study. In addition, 925 unpublished sequences anal-

ysed in Darling et al. (2000, 2003, 2004, 2006, 2007), Dar-

ling & Wade (2008), Seears et al. (2012) and Weiner et al.

(2014) were also included. All unpublished sequences,

except 177 sequences shorter than 200 bp, were depos-

ited in GenBank under the Accession nos KM19301 to

KM194582. Overall, PFR2 contains data from 460 sites

sampled during 54 oceanographic cruises and 15 near

shore collection campaigns between 1993 and 2013. It

covers all oceanic basins, all seasons and water depths

ranging between the surface and 700 m (Fig. 1; Table S1,

Supporting information).

Taxonomy

Morphological taxonomy—As the first step in the curation

process, the primary taxonomic annotations of all 3532

18S rDNA sequences gathered from NCBI and our inter-

nal databases were harmonized. The identification of

planktonic foraminifera is challenging, especially for

juvenile individuals, which often lack diagnostic charac-

ters (Brummer et al. 1986). Thus, many of the published

and unpublished 18S rDNA sequences were mislabelled

or left in open nomenclature. In some cases, the same

taxon has been recorded under different names, reflect-

ing inconsistent use of generic names, synonyms and

misspelling. To harmonize the taxonomy, we first carried

out a manual curation of the original annotations to

remove the most obvious taxonomic conflicts in the pri-

mary database. To this end, the sequence annotations

were aligned with a catalogue of 47 species names based

on the taxonomy used in Hemleben et al. (1989), but add-

ing Globigerinoides elongatus following Aurahs et al.

(2011) and treating Neogloboquadrina incompta following

Darling et al. (2006). Thus, the 109 sequences labelled as

Globigerinoides ruber (pink) and the 63 labelled as G. ruber

(white) were renamed as G. ruber. The 113 sequences of

G. ruber and G. ruber (white) attributed to the genotype

II were renamed G. elongatus following Aurahs et al.

(2011). The 12 sequences labelled Globigerinella aequilater-

alis were renamed Globigerinella siphonifera following

Hemleben et al. (1989). The seven sequences correspond-

ing to the right-coiled morphotype of Neogloboquadrina

pachyderma were renamed N. incompta following Darling

et al. (2006). All taxonomic reassignments were checked

by sequence similarity analyses to the members of the

new group. Next, we attempted to resolve the attribution

of sequences with unresolved taxonomy and searched

manually for obviously misattributed sequences. This

refers to sequences that are highly divergent from other

members of their group but identical to sequences of

other well-resolved taxa. Overall, these first steps of

manual curation led to the taxonomic reassignment of

124 sequences. All corrections and their justification are

documented in the Table S1 (Supporting information).

Annotation of genetic types—To preserve the information

on the attribution of 18S rDNA sequences to genetic

types (potential cryptic species), we harmonized the

existing attributions at this level for species where exten-

sive surveys have been carried out and published. A

total of 1356 sequences downloaded from NCBI were

associated with a genetic type label, which was always

retained. In addition, 19 sequences labelled as G. ruber,

15 as Globigerinoides sacculifer, 36 as Globigerinita glutinata,

six as Globigerinita uvula, nine as Globorotalia inflata, 10 as

N. incompta, six as N. pachyderma, five as Orbulina univer-

sa, five as Pulleniatina obliquiloculata, 30 as Hastigerina pel-

agica and 32 as G. siphonifera have been analysed after

their first release in the public domain by Aurahs et al.

(2009a,b), Ujii�e et al. (2012), Weiner et al. (2012, 2014) and

Andr�e et al. (2013, 2014) and were attributed to a genetic

type by these authors. These attributions differ from

those in the NCBI label, but were retained in the PFR2

database. In case of multiple attributions of the same

sequence to different genetic types by several authors,

we retained the molecular taxonomy that was based on

© 2015 John Wiley & Sons Ltd
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the study presenting the most resolved and comprehen-

sive attribution. In addition, 877 unpublished sequences

belonging to O. universa, Globigerina bulloides, N. inco-

mpta, Neogoboquadrina dutertrei, N. pachyderma and Turbo-

rotalita quinqueloba received a genotypic attribution

following de Vargas et al. (1999) and Darling et al. (2004,

2006, 2007), 2008). Most of these sequences have been

produced and identified within earlier studies, but were

not originally deposited on NCBI. Their PFR2 genotypic

assignment is therefore entirely consistent with the attri-

bution of the representative sequences of the same

genetic type that were deposited on NCBI.

PFR2 final taxonomic framework—As a result of the first

manual curation and annotation to the genetic type level,

the original 3532 18S rDNA sequences were reassigned

to 33 species names and 2276 sequences were annotated

to the level of genetic types (Table S1, Supporting infor-

mation). For all sequences, we established a ranked tax-

onomy with six levels: 1—morphogroup, 2—genus, 3—

species, 4—genetic type level 1, 5—genetic type level 2

and 6—genetic type 3. For the ‘morphogroup’ rank, we

used the taxonomical framework of Hemleben et al.

(1989), dividing the extant planktonic foraminifera spe-

cies into five clades based on the ultrastructure of the cal-

careous shell: spinose, nonspinose, microperforate,

monolamellar and nonspiral. The ‘genus’ and ‘species’

ranks follow the primary annotation as described above.

For the ‘genetic type level 1’, ‘genetic type level 2’ and

‘genetic type level 3’ ranks, we used the hierarchical lev-

els presented in the labels of the genetic types of G. ruber,

G. elongatus, G. siphonifera, Globigerinella calida, H. pelag-

ica, G. bulloides, N. dutertrei, P. obliquiloculata and T. quin-

queloba. Genetic type attributions lacking hierarchical

structure were reported in the rank ‘genetic type level 1’.

After this step, the Primary Reference Database (Fig. 2)

of 3532 sequences contained 113 different taxonomic

paths (Table S1, Supporting information).

Sequences partitioning into conserved and variable
regions

Because PFR2 is a resource not only for taxonomic

assignment but also for ecological and biogeographical

studies, all planktonic foraminiferal 18S rDNA sequences

were included irrespective of length, as long as they con-

tained taxonomically relevant information. As a result,

the length of the sequences included in the annotated

primary database ranges between 33 and 3412 bp. To

evaluate their coverage and information content, all

sequences were manually aligned using SEAVIEW 4 (Gouy

et al. 2010) to the borders of each variable region of the

18S rDNA fragment. The positions of the borders were

determined according to the SSU rDNA secondary struc-

ture of the monothalamous foraminifera Micrometula hya-

lostera presented by Pawlowski & Lecroq (2010), except

for the region 37/f where a strict homology was difficult

to establish for all sequences. Instead, we defined the

end of this region by the occurrence of a pattern homolo-

gous to the series of nucleotides ‘CUUUCACAUGA’

located at the 30 end of Helix 37. We also noticed that the

short conserved fragment located between the variable

regions 45/e and 47/f was difficult to identify across all

sequences. We thus merged the regions 45/e, 46 and 47/

f into a single region that we named 45E–47F (Table 1).

As a result, the position and length of six conserved (32–
37, 37–41, 39–43, 44–45, 47–49, 50) and five variable (37F,

41F, 43E, 45E–47F, 49E) regions were identified for all

sequences (Fig. 2). The remaining part of the 18S rDNA

sequence, only present in sequences EU199447,

EU199448 and EU199449 and located before the motive

‘AAGGGCACCACAAGA’, has not been analysed in this

way. All regions fully covered in a sequence and contain-

ing sequence motives observed at least twice in the

whole data set were labelled as ‘complete’. Regions fully

covered but containing a sequence motive that was

observed only once in the whole data set were labelled

as ‘poor’. This is because we consider sequencing/PCR

errors as the most likely cause for the occurrence of such

unique sequence motives. We realize that using this pro-

cedure, even genuine unique sequences may be dis-

carded from the analysis, but this would be the case only

if such sequences deviated in all regions. In all other

cases, the regions were labelled as ‘partial’ when only a

part of the region was present or ‘not available’ if they

did not contain any fragment of the sequence. As a

result, we obtain the Partitioned Primary Reference Data-

base (Fig. 2). The coverage of each individual region in

the Partitioned Primary Reference Database is given in

Table S1 (Supporting information), and all sequence par-

titions are given in Appendix S1 (Supporting informa-

tion).

Semi-automated iterative curation pipeline for optimal
taxonomic assignment

The consistency of taxonomic assignments within the

annotated database of partitioned sequences was

assessed using a semi-automated process (Figs 2 and 3).

All ‘complete’ regions of sequences with the same taxo-

nomic assignment at the morphospecies level were auto-

matically aligned using global pairwise alignment

(Needleman & Wunsch 1970), as implemented in the

software NEEDLE from the Emboss suite of bioinformatics

tools (Rice et al. 2000). To detect annotation inconsisten-

cies, mean pairwise similarities were computed for each

‘complete’ region of each sequence against all other

sequences with the same taxonomic assignment from the
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finest annotation level ‘genetic type level 3’ up to the

‘species level’ rank. Results are provided in Table S1

(Supporting information) and were visualized using R (R

Development Core Team 2014) and the ggplot2 library

(Wickham 2009). The resulting plots are given in Appen-

dix S2 (Supporting information). If all annotations are

consistent and there is no variation within taxa, each

sequence within the analysed taxon should only find an

exact match and the mean pairwise similarity for that

taxon should be 1. However, beyond sequencing/PCR

errors introducing spurious sequence differences, there

are several reasons why the mean pairwise similarity

within a taxon may be lower. First, if a sequence has

been assigned the wrong name, its similarity to all other

sequences labelled with that name will be low, thus

decreasing the resulting mean pairwise similarity. Sec-

ond, if a sequence has been assigned to the correct taxon,

but the taxon comprises multiple sequence motives, that
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Fig. 2 Workflow to constitute PFR2. In step I, the sequences, metadata and taxonomic information are retrieved from public databases

and literature or from the internal databases of the co-authors to constitute the Primary Reference Database. In step II, the coverage of

each sequence is evaluated by alignment with structural regions of the 18S RNA secondary structure derived for the species Micrometula

hyalostera (Pawlowski & Lecroq 2010). In step III, the consistency of the annotation is checked from the most exclusive level of annota-

tion ‘genetic type 3’ up to the species level (Phase 1) to detect annotation inconsistencies (See Fig. 3). Sequences with wrong annotation

are invalidated, compared to the validated part of the data set (Phase 2) and re-annotated depending on the best hit out of the valid data

set. The consistency of all annotations is then checked again following the same procedure as in Phase 1 (Phase 3), to ensure that no tax-

onomic inconsistency remains. In step IV, all sequences which have been subjected to the curation process are integrated in the Plank-

tonic foraminifera Ribosomal Reference database (PFR2). The results of all steps are given in Table S1 (Supporting information).
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sequence will find a perfect match within the taxon but

the mean pairwise similarity will also be lower than 1.

To deconvolve the different sources of sequence vari-

ability within taxa, we followed a three-step iterative

approach, which was repeated for each of the 11 ‘com-

plete’ regions of the analysed SSU rDNA fragment. First,

we considered the distribution of mean pairwise similar-

ities for all sequences within each region assigned to one

taxon at the finest rank of ‘genetic type level 3’. Assum-

ing that misidentifications are rare and result in large

pairwise distances, we manually searched for sequences

whose mean pairwise similarity deviates substantially

from the rest of the sequences within the taxon. Such

sequences were initially ‘invalidated’, whereas all other

sequences analysed at this level were ‘validated’. We

then repeated the same procedure for the higher ranks of

‘genetic type level 2’, ‘genetic type level 1’ and finally

‘species level’, always starting with the full database

(Figs 2 and 3A). Thus, at each level, we expected a mis-

identified sequence to have a pairwise similarity mark-

edly lower than the mean of pairwise similarities

between correctly assigned sequences (Fig. 3B). This pro-

cedure had to be repeated for every rank, because not all

sequences in the database are assigned to all ranks. Nev-

ertheless, once ‘validated’, a sequence cannot be ‘invali-

dated’ during analyses of higher rank taxa, because it

represents an accepted variability within that taxon. In

taxa where all sequences within a region show low mean

pairwise similarities, all attributions are initially invali-

dated (this would be typically the case for a ‘wastebasket

taxa’; Fig. 3C).

In the second step, all sequences invalidated during

step 1 were reconsidered based on their pairwise simi-

larities with ‘validated’ sequences from the same region.

The main goal of the curated taxonomy being to achieve

correct taxonomic assignment at the species level, the

pairwise comparison was carried out at this rank. If the

best match is a ‘validated’ sequence with the same ini-

tial species attribution as the invalidated sequence, this

sequence is ‘validated’ at the species level and its

assignment at the ‘genetic type’ level is then deleted.

Such a situation can only occur when the sequence was

initially assigned to the wrong genetic type within the

correct species. If the pairwise comparisons of all

regions analysed match sequences with different (but

consistent) species attributions than the invalidated

sequence, the sequence is reattributed to that species. If

the pairwise comparisons indicate that the analysed

sequence has no close relative in the validated part of

the database, the initial attribution is retained, provided

that the initial attribution is not yet in the validated data

set. This case occurs when all sequences of one species

have been initially invalidated because the same species

name was associated with highly divergent sequences.

When the sequence has no close relative but its initial

attribution is represented in the validated part of the

data set, the initial attribution is discarded and the

sequence receives an artificial attribution derived from

the nearest higher rank that matches the pairwise com-

parisons. In all cases, the erroneous attributions are

replaced by the corrected ones in the database (Fig. 2,

Table S1, Supporting information).

In the third step, sequences that received new attribu-

tions were reanalysed as described in step 1. If inconsis-

tencies in the distribution of mean pairwise similarities

remain, steps 2 and 3 are repeated until no inconsistency

is observed.

As a final diagnosis, we performed leave-one-out

analyses to evaluate the robustness and potential limi-

tations of the curated taxonomy, as well as a mono-

phyly validation by neighbour joining using only

sequences that are covering the six conserved and five

variable regions of the 50 end fragment. First, each

individual sequence included in the first version of

Table 1 Flanking conserved sequences of the five variable regions in planktonic foraminifera. The minimum and maximum length of

each region are given as well as their coverage in the database (see details in the text)

Region Specificity Beginning End

Min

length

Max

length

Not

available Partial Poor Complete

32–37 Eukaryotes — — — — 949 2583 0 0

37F foraminifera 50-GGAUUGACA CUUUCACAUGA-30 38 132 800 272 249 2211

37–41 Eukaryotes — — 68 72 547 403 138 2444

41F foraminifera 50-AAUUGCG GCAACGAA-30 58 322 349 346 282 2555

39–43 Eukaryotes — — 27 29 460 34 57 2981

43E Eukaryotes 50-CUUGUU AACUAGAGGG-30 33 195 401 263 265 2603

44–45 Eukaryotes — — 113 123 487 1288 136 1621

45E–47F Eukaryotes–Forams 50-CAGUGAG GGUGGGG-30 179 312 1660 187 386 1299

47–49 Eukaryotes — — 140 148 1827 425 152 1128

49E Eukaryotes 50-GUGAG CGAACAG-30 27 127 2251 130 125 1026

50 Eukaryotes — — — — 2389 1143 0 0

© 2015 John Wiley & Sons Ltd
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PFR2 was blasted against the remaining part of the

database including n-1 sequences using SWIPE (Rog-

nes 2011). The sequences among the ‘n-1 PFR2 data-

base’ returning the highest score were retrieved and

their taxonomic attribution compared to the one of the

blasted sequence (Table S1, Supporting information).

Second, we retrieved all sequences covering the five

variable and six conserved regions and divided them

according to their assignment to higher taxa (here sim-

plified by the morphogroups monolamellar, nonspi-

nose, spinose, and microperforates + benthic). Each

subset was automatically aligned using MAFFT v.7

(Katoh & Standley 2013), and the subsequent align-

ments were trimmed off on the edges to conserve only

homologous position, finally leading to 41, 583, 271,

and 100 analysed sequences for the monolamellar, non-

spinose, spinose, and microperforates + nonspiral mor-

phogroups, respectively. For each alignment, a tree

was inferred using a neighbour-joining approach with

Juke and Cantor distance while taking into account
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given in Table S1 (Supporting information).
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gap sites as implemented in SEAVIEW 4 (Fig. S1, Sup-

porting information) with 100 pseudoreplicates. The

scripts used to perform the different curation steps are

available as Appendix S3 (Supporting information).

Results

Of the 3532 planktonic foraminiferal 18S rDNA partial

sequences analysed, 3347 (94.8%) contained at least one

‘complete’ gene region making possible the curation pro-

cess. The remaining 185 sequences included 33 single-

tons (rare motives or poor quality sequences) and 152

sequences that were too short to cover at least one region

(Table S1, Supporting information). Among the 3347

curated sequences, the taxonomic assignment of 84 was

initially invalidated. Of these, three represent cases

where the morphospecies attribution was correct, but the

attribution to a genetic type was erroneous. In 46 cases,

the invalidated sequences found a perfect match with a

different taxon and thus their taxonomic assignment was

changed. In all of these cases, the novel taxonomic

assignment corresponded to a morphologically similar

morphospecies, explaining the original misidentification

of the sequenced specimen. In 14 cases, the original

assignment was retained because the sequences did not

find any match and their original attribution did not

appear in the validated part of the data set. All of these

sequences were labelled as Hastigerinella digitata. This

species name had been entirely invalidated in the first

step because of inconsistent use of the homonymous spe-

cies named Beella digitata. Finally, 17 sequences received

an unresolved artificial assignment. These represent six

different sequence motives diverging substantially from

all sequences in the validated part of the database and

also between each other. Because the original attribution

upon collection was obviously wrong, we could not reas-

sign these sequences to the species level. In two cases,

we could identify the most likely generic attribution, but

four sequences are left with an entirely unresolved path.

Finally, our procedure captured one sequence with a

spelling error in its path and three sequences that appear

to have been attributed correctly but represent small

variants within species. After resolution of the 84 con-

flicts described above, the re-annotated data set was sub-

jected to a second round of the curation process for

verification. All sequences were validated.

Based on this internally consistent taxonomic annota-

tion for all 3347 18S rDNA sequences from individual

planktonic foraminifera, we generated the Planktonic

Foraminiferal Ribosomal Reference or PFR2 database. Of the

3347 sequences, 25 were shorter than 200 bp and could

not be deposited in NCBI (see Table S1, Supporting

information). The PFR2 1.0 database thus includes 3322

reference sequences assigned to 32 morphospecies and

six taxa with unresolved taxonomy (Fig. 2) and contains

119 unique taxonomic paths when including all three

levels of genetic types.

The leave-one-out BLAST evaluation applied on the first

version of PFR2 to assess its robustness returned an iden-

tical taxonomic path for 2509 sequences. For 614

sequences, the BLAST-determined taxonomic paths were

identical between the ‘morphogroup’ and ‘species’ rank

but displayed a different resolution between the ranks

‘genetic type level 1’ and ‘genetic type level 3’. This

reflects a situation where some sequences belonging to

one species are annotated to the level of a genetic type,

whereas others are not. Finally, 19 sequences were

assigned to the correct species but to a different genetic

type. This illustrates the case of genetic types repre-

sented by only one sequence in the database, which were

logically assigned to the closest genetic type within the

same species by the leave-one-out procedure. Thus,

94.5% of the sequences in the PFR2 database find a near-

est neighbour with a correct taxonomic assignment at the

species target level. For the remaining 180 sequences, the

returned taxonomic path was inconsistent at the species

level. In two cases, the sequences were assigned to a

morphologically and phylogenetically close sister species

(Globorotalia ungulata and Globorotalia tumida), reflecting

insufficient coverage in the database for these species.

Two cases involved singleton sequences with unresolved

taxonomy, which find no obvious nearest neighbour.

Finally, 176 cases of inconsistent identification refer to

sequences of Globigerinella calida and Globigerinella sipho-

nifera, whose species names have been used interchange-

ably in the literature (Weiner et al. 2014) and the clade

has been shown to be in need of a taxonomic revision

(Weiner et al. 2015). The leave-one-out evaluation thus

reveals excellent coverage of PFR2 and confirms that the

curated taxonomy is internally entirely consistent.

To further confirm the validity of morphospecies level

taxonomy, we constructed NJ trees for the five clades

including only the long sequences (Fig. S1, Supporting

information). This analysis confirmed the monophyly of

all morphospecies, except the G. calida/G. siphonifera

plexus. All clades were strongly supported except for the

sister species G. tumida and G. ungulata and the monola-

mellar species Hastigerina pelagica and H. digitata. In the

first case, the poor support reflects the lack of differentia-

tion between these two species in the conserved region

of the gene, thus decreasing the bootstrap score; in the

second case, the extreme divergence of two genetic lin-

eages of H. pelagica renders the phylogenetic reconstruc-

tion difficult (Weiner et al. 2012).

An analysis of the taxonomic annotations retained in

PFR2 reveals that the database covers at least 70–80% of

the traditionally recognized planktonic foraminiferal

species in each clade. The species represented in PFR2

© 2015 John Wiley & Sons Ltd
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constitute the dominant part of planktonic foraminifera

assemblages in the world oceans. Compared with a glo-

bal database of census counts from surface sediments

(MARGO database, Kucera et al. 2005), the species cov-

ered by PFR2 account for >90% of tests larger than

150 lm found in surface sediments (Fig. 4). In cold and

temperate provinces, PFR2 species account for almost the

entire assemblages, while in warmer subtropical and

tropical waters, only up to 4% of the sedimentary assem-

blages are not represented in PFR2. Evidently, PFR2 refer-

ence sequences cover most of the ecologically relevant

portion of the morphological diversity, and the taxa that

are not yet represented in PFR2 are small, rare or taxo-

nomically obscure. It is possible that some of these taxa

may correspond to the six sequences with still unre-

solved taxonomy. If so, PFR2 may be considered to cover

up to 38 of the 47 recognized species.

Finally, for each species present in PFR2, we evaluated

the ecological coverage of the global sampling effort

(Fig. 4). Morphospecies of planktonic foraminifera are

known to be distributed zonally across the world oceans,

reflecting the latitudinal distribution of sea surface tem-

perature (e.g. B�e & Tolderlund 1971). A comparison

between the temperature range of each species as indi-

cated by their relative abundance in surface sediment

samples (Kucera et al. 2005) and the temperatures mea-

sured at sampling localities shows that a large portion of

the ecological range of the species is covered by the refer-

ence sequences in PFR2 (Fig. 4).

The PFR2 web interface

To facilitate data download and comparative sequence

analyses, PFR2 has been implemented into a dedicated

web interface, available at http://pfr2.sb-roscoff.fr. The

website provides:

1 a search/browse module, which allows the user to

download parts of the database either by taxonomic
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rank (morphogroup name, genus name, species name),

geographic region (e.g. North Atlantic, Mediterranean

Sea, Indian Ocean) or collection (cruise name);

2 a classical BLAST/similarity module that facilitates iden-

tification of unknown sequences;

3 a map module displaying the localities for all

sequences present in PFR2 and facilitating download

of all data from each single locality; and

4 a download section with direct access to all data

included in PFR2. All sequences and sequence parti-

tions are available in FASTA format, and the metadata

are available in a tabulated file.

Discussion

Comprehensive databases of ribosomal RNA sequences

with curated taxonomy are available for protists (Protist

ribosomal reference database, PR2; Guillou et al., 2013)

and for the major domains of life (SILVA; Yilmaz et al.

2013). These databases include sequences of planktonic

foraminifera. However, they are used mainly as bench-

marks to annotate complex environmental data sets (e.g.

Logares et al. 2014) at the morphological species level. In

contrast, PFR2 has been designed and implemented in a

way that facilitates other applications.

First, because of structural limitations, PR2 contains

‘only’ 402 sequences of planktonic foraminifera (based

on Released 203 of GenBank, October 2014), compared

to PFR2, which contains for now 3322 SSU rDNA

sequences. Second, 2276 of the sequences present in

PFR2 have an assignation to the genetic type level, and

as far as possible, the sequences are associated with

metadata related to the origin of each specimen and

the conditions where it was collected, thus forming a

basis for ecological modelling. Third, most importantly,

using planktonic foraminifera as a case study, we pro-

pose and implement an annotation scheme with

unmatched accuracy and full tracking of changes. This

is only possible because of the narrower focus of PFR2

combined with high-level expert knowledge of their

taxonomy. The fidelity of the annotations will facilitate
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a qualitatively entirely different level of analysis of

eDNA libraries.

For example, the design of PFR2 allows to incorporate

advances in classical and molecular taxonomy, particu-

larly at the level of genetic types (e.g. Andr�e et al. 2014),

which can be re-evaluated depending on the criteria

used to delineate molecular OTUs. Further, by retaining

information on clone attribution to specimens (vouch-

ers), PFR2 allows to evaluate intragenomic polymor-

phism, which offers excellent opportunity to identify the

taxonomically relevant level of variability (Weber and

Pawlowski, 2014). Finally, the modular structure of PFR2

(i.e. its partitioning into variable and conserved regions)

is particularly suitable for the evaluation of existing bar-

codes or the design of new barcoding systems needed to

capture total or partial planktonic foraminiferal diversity

within complex plankton assemblages. Indeed, an exami-

nation of the length polymorphism in the 11 regions of

the 18S rDNA fragment that have been aligned for all

PFR2 sequences reveals that next to the variable 37/f

region identified as a barcode for benthic foraminifera

(Pawlowski & Lecroq 2010), several other regions may

be suitable as targets for barcoding of planktonic forami-

nifera (Fig. 5).

The main difference between PFR2 and classical da-

tabases is in the association of sequence data with envi-

ronmental and collection data. Such level of annotation

is not feasible in large databases, which have to rely on

the completeness and level of metadata details provided

in GenBank. The association of metadata to PFR2

sequences facilitates an assessment of biogeography and

ecology of genetic types (potential cryptic species). This

is significant for studies of evolutionary processes in the

open ocean such as speciation and gene flow at basin

scale, but also for paleoceanography, which exploits

ecological preferences of planktonic Foraminferal spe-

cies to reconstruct climate history of the Earth (e.g. Ku-

cera et al. 2005). Modelling studies showed that the

integration of cryptic diversity into paleoceanographic

studies will improve their accuracy (Kucera & Darling

2002; Morard et al. 2013). Together with the MARGO

database (Kucera et al. 2005), which records the occur-

rence of morphospecies of planktonic foraminifera in

surface sediments and the CHRONOS/NEPTUNE data-

base (Spencer-Cervato et al. 1994; http://www.chro-

nos.org/), which records their occurrence through

geological time, PFR2 represents the cornerstone to con-

nect genetic diversity to the fossil record in an entire

group of pelagic protists.

Conclusion and perspectives

The PFR2 database represents the first geographically

and taxonomically comprehensive reference barcoding

system for an entire group of pelagic protists. It consti-

tutes a pivotal tool to investigate the diversity, ecology,

biogeography and evolution in planktonic foraminifera

as a model system for pelagic protists. In addition, the

database constitutes an important resource allowing

reinterpretation and refinement of the use of foramini-

fera as markers for stratigraphy and paleoceanography.

In particular, PFR2 can be used to (i) annotate and clas-

sify newly generated 18S rDNA sequences from single

individuals, (ii) study the biogeography of cryptic

genetic types, (iii) design rank-specific primers and

probes to target any group of planktonic foraminifera in

natural communities and (iv) assign accurate taxonomy

to environmental sequences from metabarcoding or me-

tagenomic data sets. This last point is particularly worth

noting. Indeed, future global metabarcoding of plank-

tonic foraminifera covering comprehensive spatio-tem-

poral scales will likely reveal the full extent and

complexity of species diversity and ecology in this

group, serving as a model system for studies of the evo-

lutionary dynamics of the plankton and its interaction

with the Earth system.
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