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Species interaction networks are shaped by abiotic and biotic factors. Here, as part of

the Tara Oceans project, we studied the photic zone interactome using environmental

factors and organismal abundance profiles and found that environmental factors are

incomplete predictors of community structure. We found associations across plankton

functional types and phylogenetic groups to be nonrandomly distributed on the network

and driven by both local and global patterns. We identified interactions among grazers,

primary producers, viruses, and (mainly parasitic) symbionts and validated network-

generated hypotheses using microscopy to confirm symbiotic relationships. We have thus

provided a resource to support further research on ocean food webs and integrating

biological components into ocean models.

T
he structure of oceanic ecosystems results

from the complex interplay between resi-

dent organisms and their environment. In

the world’s largest ecosystem, oceanic plank-

ton (composedof viruses, prokaryotes,micro-

bial eukaryotes, phytoplankton, and zooplankton)

form trophic and symbiotic interaction networks

(1–4) that are influenced by environmental con-

ditions. Ecosystem structure and composition

are governed by abiotic as well as biotic factors.

The former include environmental conditions

and nutrient availability (5), whereas the latter

include grazing, pathogenicity, and parasitism

(6, 7). Historically, abiotic factors have been

considered to have a stronger effect, but recent-

ly, appreciation for biotic factors is growing

(8, 9).We sought to develop a quantitative under-

standing of biotic and abiotic interactions in

natural systems in which the organisms are

taxonomically and trophically diverse (10). We

used sequencing technologies to profile com-

munities across trophic levels, organismal sizes,

and geographic ranges and to predict organismal

interactions across biomes based on co-occurrence

patterns (11). Previous efforts addressing these

issues have provided insights on the structure

(12, 13) and dynamics of microbial communities

(14–16).

We analyzed data from 313 plankton samples

the Tara Oceans expedition (17) derived from

seven size-fractions covering collectively 68 sta-

tions at two depths across eight oceanic provinces

(table S1). The plankton samples spanned sizes

that include organisms from viruses to small

metazoans. We derived viral, prokaryotic, and

eukaryotic abundance profiles from clusters of

metagenomic contigs, Illumina-sequenced meta-

genomes (mitags), and 18S ribosomalDNA (rDNA)

V9 sequences, respectively (table S1) (10, 18, 19)

and collected environmental data from on-site

and satellite measurements (17, 20, 21). We used

network inference methods and machine-learning

techniques so as to disentangle biotic and abiotic

signals shaping ocean plankton communities and

to construct an interactome that described the

network of interactions among photic zone plank-

ton groups. We used the interactome to focus on

specific relationships, which we validated through

microscopic analysis of symbiont pairs and in

silico analysis of phage-host pairings.

Evaluating the effect of abiotic and biotic
factors on community structure

We first reassessed the effects of environment

and geography on community structure. Using

variation partitioning (22), we found that on av-

erage, the percentage of variation in community

composition explained by environment alone was

18%, by environment combined with geography

13%, and by geography alone only 3% (23, 24). In

addition, we built random forest-based models

(25) in order to predict abundance profiles of

the Operational Taxonomic Units (OTU) using

(i) OTUs alone, (ii) environmental variables alone,

and (iii) OTUs and environmental variables com-

bined and tested for each OTU whether one of

the three approaches outcompeted the other.

These analyses revealed that 95% of the OTU-

only models are more accurate in predicting OTU

abundances than environmental variable mod-

els, and that combined models were no better

than the OTU-only models (26, 27). This sug-

gests that abiotic factors have a more limited

effect on community structure than previously

assumed (8).

To study the role of biotic interactions, we

developed amethodwith which to identify robust

species associations in the context of environ-

mental conditions. Twenty-three taxon-taxon and

taxon-environment co-occurrence networks were

constructed based on 9292 taxa, representing the

combinations of two depths, seven organismal

SCIENCE sciencemag.org 22 MAY 2015 • VOL 348 ISSUE 6237 1262073-1

1Department of Microbiology and Immunology, Rega Institute
KU Leuven, Herestraat 49, 3000 Leuven, Belgium. 2VIB
Center for the Biology of Disease, VIB, Herestraat 49, 3000
Leuven, Belgium. 3Department of Applied Biological Sciences
(DBIT), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels,
Belgium. 4Station Biologique de Roscoff, CNRS, UMR 7144,
Place Georges Teissier, 29680 Roscoff, France. 5Sorbonne
Universités, Université Pierre et Marie Curie (UPMC)
Université Paris 06, UMR 7144, Station Biologique de
Roscoff, Place Georges Teissier, 29680 Roscoff, France.
6Ecole Normale Supérieure, Institut de Biologie de l’ENS
(IBENS), Inserm U1024, CNRS UMR 8197, Paris, F-75005
France. 7Interuniversity Institute of Bioinformatics in
Brussels (IB)2, ULB Machine Learning Group, Computer
Science Department, Université Libre de Bruxelles (ULB),
Brussels, Belgium. 8Department of Ecology and Evolutionary
Biology, University of Arizona, Tucson, AZ, 85721, USA.
9Institut de Biologie Paris-Seine, CNRS FR3631, F-75005,
Paris, France. 10CNRS, UMR 7093, Laboratoire
d’Océanographie de Villefranche (LOV), Observatoire
Océanologique, F-06230 Villefranche-sur-mer, France.
11Sorbonne Universités, UPMC Paris 06, UMR 7093,
Laboratoire d’Océanographie de Villefranche (LOV),
Observatoire Océanologique, F-06230 Villefranche-sur-mer,
France. 12Department of Marine Biology and Oceanography,
Institute of Marine Sciences (ICM)–Consejo Superior de
Investigaciones Científicas (CSIC), Pg. Marítim de la
Barceloneta, 37-49, Barcelona E08003, Spain. 13Sorbonne
Universités, UPMC, Université Paris 06, CNRS–Institut pour
la Recherche et le Développement–Muséum National
d'Histoire Naturelle, Laboratoire d’Océanographie et du
Climat: Expérimentations et Approches Numériques
(LOCEAN) Laboratory, 4 Place Jussieu, 75005, Paris, France.
14KU Leuven, Laboratory of Aquatic Ecology, Evolution and
Conservation, Charles Deberiotstraat 32, 3000 Leuven.
15PANGAEA, Data Publisher for Earth and Environmental
Science, University of Bremen, Hochschulring 18, 28359
Bremen, Germany. 16MARUM, Center for Marine
Environmental Sciences, University of Bremen,
Hochschulring 18, 28359 Bremen, Germany. 17Structural and
Computational Biology, European Molecular Biology
Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
18Directors’ Research, European Molecular Biology
Laboratory, Heidelberg, Germany. 19Institute for Chemical
Research, Kyoto University, Gokasho, Uji, 611-0011 Kyoto,
Japan. 20Department of Geosciences, Laboratoire de
Météorologie Dynamique (LMD), Ecole Normale Supérieure,
24 rue Lhomond, 75231 Paris Cedex 05, France. 21Laboratoire
de Physique des Océan, Université de Bretagne Occidentale
(UBO)–Institut Universaire Européen de la Mer (IUEM), Palce
Copernic, 29820 Polouzané, France. 22Commissariat à l’Énergie
Atomique (CEA), Genoscope, 2 rue Gaston Crémieux, 91000
Evry, France. 23CNRS, UMR 8030, 2 rue Gaston Crémieux,
91000 Evry, France. 24Université d’Evry, UMR 8030, CP5706
Evry, France. 25Max-Delbrück-Centre for Molecular Medicine,
13092 Berlin, Germany.
*These authors contributed equally to this work. †Present address:
Department of Microbiology, Ohio State University, Columbus, OH
43210, USA. ‡Tara Oceans coordinators and affiliations are listed
at the end of this manuscript. §Corresponding author. E-mail:

jeroen.raes@vib-kuleuven.be (J.R.); vargas@sb-roscoff.fr (C.d.V.);

cbowler@biologie.ens.fr (C.B.); karsenti@embl.de (E.K.)

 o
n
 M

a
y
 2

2
, 

2
0
1
5

w
w

w
.s

c
ie

n
c
e
m

a
g
.o

rg
D

o
w

n
lo

a
d
e
d
 f

ro
m

 
 o

n
 M

a
y
 2

2
, 

2
0
1
5

w
w

w
.s

c
ie

n
c
e
m

a
g
.o

rg
D

o
w

n
lo

a
d
e
d
 f

ro
m

 
 o

n
 M

a
y
 2

2
, 

2
0
1
5

w
w

w
.s

c
ie

n
c
e
m

a
g
.o

rg
D

o
w

n
lo

a
d
e
d
 f

ro
m

 
 o

n
 M

a
y
 2

2
, 

2
0
1
5

w
w

w
.s

c
ie

n
c
e
m

a
g
.o

rg
D

o
w

n
lo

a
d
e
d
 f

ro
m

 
 o

n
 M

a
y
 2

2
, 

2
0
1
5

w
w

w
.s

c
ie

n
c
e
m

a
g
.o

rg
D

o
w

n
lo

a
d
e
d
 f

ro
m

 
 o

n
 M

a
y
 2

2
, 

2
0
1
5

w
w

w
.s

c
ie

n
c
e
m

a
g
.o

rg
D

o
w

n
lo

a
d
e
d
 f

ro
m

 
 o

n
 M

a
y
 2

2
, 

2
0
1
5

w
w

w
.s

c
ie

n
c
e
m

a
g
.o

rg
D

o
w

n
lo

a
d
e
d
 f

ro
m

 
 o

n
 M

a
y
 2

2
, 

2
0
1
5

w
w

w
.s

c
ie

n
c
e
m

a
g
.o

rg
D

o
w

n
lo

a
d
e
d
 f

ro
m

 
 o

n
 M

a
y
 2

2
, 

2
0
1
5

w
w

w
.s

c
ie

n
c
e
m

a
g
.o

rg
D

o
w

n
lo

a
d
e
d
 f

ro
m

 



size ranges, and four organismal domains (Bac-

teria, Archaea, Eukarya, and viruses) (28). To re-

duce noise and thus false-positive predictions,

we restricted our analysis to taxa present in at

least 20% of the samples and used conservative

statistical cutoffs. We merged the individual net-

works into a global network, which features a

total of 127,995 distinct edges, of which 92,633

are taxon-taxon edges and 35,362 are taxon-

environment edges (Table 1). Node degree does

not depend on the abundance of the node (28).

As such, this network represents a resource

with which to examine species associations in

the global oceans (28–31).

Next, we assessed howmany of the taxon links

represented “niche effects” driven by geography

or environment (such as when taxa respond sim-

ilarly to a common environmental condition).

We examinedmotifs consisting of two correlated

taxa that also correlate with at least one com-

mon environmental parameter (“environmental

triplets” to identify associations that were driv-

en by environment) using three approaches

[interaction information, sign pattern analysis,

and network deconvolution (32)]. We identi-

fied 29,912 taxon-taxon-environment associa-

tions (32.3% of total). Among environmental

factors, we found that PO4, temperature, NO2,

and mixed-layer depth were frequent drivers of

network connections (Fig. 1A). Although the

three methodologies pinpoint indirect associ-

ations, only interaction information directly

identifies synergistic effects in these biotic-abiotic

triplets. Exploiting this property, we disentangled

the 29,912 environment-affected associations

into 11,043 edges driven solely by abiotic factors

(excluded from the network for the remainder of

the study) (31, 33) and 18,869 edges whose de-

pendencies result from biotic-abiotic synergistic

effects. Thus, we find that a minority of asso-

ciations can be explained by an environmental

factor.

Evaluation of predicted interactions

Co-occurrence techniques have heretofore mainly

been applied to bacteria. We detected eukaryotic

interactions on the basis of analysis of sequences

at the V9 hypervariable region of the 18S ribo-

somal RNA (rRNA) gene. We built a literature-

curated collection (34) of 574 known symbiotic

interactions (including both parasitism and mu-

tualism) in marine eukaryotic plankton (30, 35).

From 43 genus-level interactions represented

by OTUs in the abundance preprocessed input

matrices, we found 42% (18 genus pairs; 47%

when limiting to parasitic interactions) repre-

sented in our reference list. The probability

of having found each of these interactions by

chance alone was <0.01 (Fisher exact test, av-

erage P = 4
–3
, median P = 5e

–7
). On the basis of

this sensitivity and a false discovery rate aver-

aging to 9% (computed from null models), we

estimate the number of interactions among

eukaryotes present in our filtered input matrices

to be between 53,000 and 139,000. Most of the

false-negative interactions were due to the strict

filtering rules we used to avoid false positives;

this hampers detection when, for example, in-

teractions are facultative or when interaction

partners may vary among closely related groups

depending on oceanic region (4). False positives

could represent indirect interactions between

species (bystander effects) or environmental ef-

fects caused by factors not captured in this study

(36, 37).

Biotic interactions within and

across kingdoms

The integrated network contained 81,590 pre-

dicted biotic interactions (30) that were non-

randomly distributed within and between size

fractions (Fig. 1, B and C) (38). Positive associa-

tions outnumbered mutual exclusions (72% ver-

sus 28%), and we observed a nonrandom edge

distribution with regard to phylogeny (Fig. 2A),

with most associations derived from syndiniales

and other dinoflagellates (examples are shown in
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Fig. 1. Global oceanic taxon-environment interaction network properties.

(A) Major environmental factors affecting abundance patterns. Phosphate con-

centration (PO4), temperature, and nitrite concentration (NO2) are the top three

parameters driving abiotic associations, followed by MLD (assessed by temper-

ature change), Particulate beam attenuation measured at 660 nm, silica con-

centration (Si), nitrite+nitrate concentration (NO2NO3), MLD-s (MLD assessed

by density change), pressure, nitracline, and others corresponds to the agglom-

erated contribution of the rest of parameters tested. (B) Number of interdomain

and intradomain copresences and mutual exclusions. (C) Distribution of edges

across size fractions: 0.2 to 1.6(3), prokaryote-enriched fractions0.2 to 1.6 mmand

0.2 to 3 mm; >08 mm, non-size-fractionated samples; 08 to 5 mm, piconano-

plankton; 20 to 180 mm, microplankton; 180 to 2000 mm, meso-plankton;

interfrac, includes interfraction networks 08 to 5 mm versus 20 to 180 mm, 08 to 5 mm versus 180 to 2000 mm, 20 to 180 mm versus 180 to 2000 mm, and 0.2

to 1.6(3) mm versus ≤ 0.2 mm (virus-enriched fraction).

Table 1. Properties of the merged taxon network.The positive subset of the network was clustered with the leading eigen vector algorithm (91).

Nodes Edges
Positive

edges (%)

Negative

edges

Average

clustering

coefficient

Average

path

length
Diameter

Average

betweenness

Modularity of

positive

network

Number of

modules in

positive

network

9169 92,633 68,856 (74.33) 23,777 0.229 3.43 12 11024 0.51 51

TARA OCEANS 



Fig. 3A), and exclusions involving arthropods.

Certain combinations of phylogenetic groups

are overrepresented (39). For instance, we found

a clade of syndiniales [theMALV-II Clade 1 belong-

ing to Amoebophrya (3)] enriched in positive

associations with tintinnids (P = 2
–4
), which

are among the most abundant ciliates in ma-

rine plankton (40). The tintinnid Xystonella

lohmani was described in 1964 to be infected

by Amoebophrya tintinnis (41), and tintinnids

can feed on Amoebophrya free-living stages (42).

Other found host-parasite associations included

the copepod parasites Blastodinium, Ellobiopsis,

and Vampyrophrya (41, 43–45).

Ontheotherhand,Maxillopoda,Bacillariophyceae,

and collodarians, three groups of relatively large

sized organisms whose biomass can dominate

planktonic ecosystems, are rich in negative as-

sociations among them (33). Collodarians and

copepods are abundant in, respectively, the oli-

gotrophic tropical and eutrophic andmesotrophic

temperate systems (10, 46). The decoupling of

phyto- and zooplankton in open oceans by dia-

toms anticorrelating to copepods (47, 48) is

attributed to growth rate differences and to the

diatom production of compounds harmful to

their grazers (49). The combination of these

SCIENCE sciencemag.org 22 MAY 2015 • VOL 348 ISSUE 6237 1262073-3

Fig. 2. Taxonomic and geographic patterns within the co-occurrence

network. (A) Top 15 interacting taxon groups depicted as colored segments

in a CIRCOS plot, in which ribbons connecting two segments indicate co-

presence and exclusion links, on the left and right, respectively. Size of the

ribbon is proportional to the number of links (copresences and exclusions)

between the OTUs assigned to the respective segments, and color is seg-

ment (of the two involved) with the more total links. Links are dominated by

the obligate parasites syndiniales and by Arthropoda and Dinophyceae. (B)

TaraOceans sampling stations grouped by oceanic provinces. (C) Frequency of

local co-occurrence patterns across the oceanic provinces, showing that most

local patterns are located in MS. (D to G) Taxonomic patterns of co-

occurrences acrossMS (D), SPO (E), IO (F), and RS (G). Edges are represented

as ribbons between barcodes grouped into their taxonomic order as in (A).

Links sharing the same segment are affiliated to the same taxon (Order),

showing that the connectivity patterns across taxa are conserved at high

taxonomic ranks. The local specificity of interactions at higher resolution

(OTUs) is apparent by thin ribbons (edge resolution), with different starts, and

end positions (different OTUs) within the shared (taxon) segment, section

color, and ordering correspond to those in (A). SO-specific associations are

mainly driven by bacterial interactions (53).



effects could lie at the basis of this observation,

which contrasts with other free-living autotrophs

represented in the network (cyanobacteria and

prymnesiophytes), which display primarily pos-

itive associations (Fig. 2A).

Cross-kingdom associations between Bacteria

and Archaea were limited to 24 mutual exclu-

sions.Within Archaea, Thermoplasmatales (Marine

Group II) co-occur with several phytoplankton

clades. Links between Bacteria and protists re-

covered five out of eight recently discovered in-

teractions from protist single-cell sequencing

(50). Associations between Diatoms and Flavo-

bacteria agreed with their described symbioses

(51). We also observed co-ocurrence of uncul-

tured dinoflagellates with members of Rhodo-

bacterales (Ruegeria), which is in agreement with

a symbiosis between Ruegeria sp. TM1040 and

Pfiesteria piscicida around the ability of Ruegeria

to metabolize dinoflaggelate-produced dimethyl-

sulfoniopropionate (52).

Global versus local associations

We further investigated whether our network

was driven by global trends or is defined by

local signals. To this aim, we divided our set of

samples into seven main regions—Mediterranean

1262073-4 22 MAY 2015 • VOL 348 ISSUE 6237 sciencemag.org SCIENCE

Fig. 3.Top-down interactions in plankton. (A) Three different dinoflagellate specimens

from Tara samples display an advanced infectious stage by syndiniales parasites. The

cross-section of the cell shows the typical folded structure of the parasitoid chain, which

fills the entire host cell. Each nucleus (blue) of the coiled ribbon corresponds to a future free-living parasite. DNA is stained with Hoechst (dark blue), membranes

are stained with DiOC6 (green), and specimen surface is light blue. Scale bar, 5 mm. (B) Subnetwork of metanodes that encapsulate barcodes affiliated to

parasites or PFTs. The PFTs mapped onto the network are: phytoplankton DMS producers, mixed phytoplankton, phytoplankton silicifiers, pico-eukaryotic

heterotrophs, proto-zooplankton and meso-zooplankton. Edge width reflects the number of edges in the taxon graph between the corresponding metanodes.

Over-represented links (multiple-test corrected P < 0.05) are colored in green if they represent copresences and in red if they represent exclusions; gray means

non-overrepresented combinations. When both copresences and exclusions were significant, the edge is shown as copresence. (C) Parasite connections within

micro- and zooplankton groups. (D) Number of hosts per phage. (Inset) Phage associations to bacterial (target) phyla. (E) Putative Bacteroidetes viruses detected

with co-occurence and detection in a single-cell genome (SAG). On the left are viral sequences from a Flavobacterium SAG (top) and Tara Oceans virome

(bottom), displaying an average of 89% nucleotide identity. On the right is the correspondence between the ribosomal genes detected in the same SAG (top) and

the 16S sequence associated to the Tara Oceans contig based on co-occurence (79% nucleotide identity). For clarity, a subset of contig ARTD0100013 only (from

10,000 to 16,000 nucleotides) is displayed. This sequence was also reverse-complemented. PurM, phosphoribosylaminoimidazole synthetase; DNA Pol. A, DNA

polymerase A.

TARA OCEANS 



Sea (MS), Red Sea (RS), Indian Ocean (IO), South

Atlantic (SAO), Southern Ocean (SO), South

Pacific Ocean (SPO) and North Atlantic Ocean

(NAO)—and assessed the “locality” of associa-

tions by comparing the score with or without

that region. We found that association patterns

were mostly driven by global trends because

only 14% of edges were identified as local (Fig.

2, B and C). Approximately two thirds of local

associations occur in MS (7215), followed by SPO

(1058), whereas the rest are contributed by SO

(901), IO (894), RS (889), SAO (163), and NAO

(60) (Fig. 2, C to G). MS was the region with

most sampling sites, which allowed us to re-

cover more local patterns. Nevertheless, Fig. 2, C

to G, shows that although the same major groups

(order level) interact in both the global and local

networks, each local site has its own specific

interaction profile (P < 1
–8
) (33, 39, 53).

Parasite impact on plankton

functional types

Parasitic interactions are the most abundant

pattern present in the network, which is also

eminent by repeated microscopic observation

of parasitic interactions from the Tara samples

(Fig. 3A). We focused on predicted parasitic in-

teractions and assessed their potential impact on

biogeochemical processes by exploring a func-

tional subnetwork (21,572 edges) of known and

previously unidentified plankton parasites (10)

togetherwith classical “plankton functional types”’

(PFTs) (54). PFTs group taxa by trophic strategy

(for example, autotrophs versus heterotrophs) and

role in ocean biogeochemistry (Fig. 3A) (55). The

relationship between the different PFTs (net-

work density of 0.65) highlights strong depen-

dencies between phytoplankton and grazers. We

found that all PFTs are associated with parasites,

but not always to the same extent. Most links

involve syndiniales MALV-I and MALV-II clades

associated to zooplankton and, to a lesser extent,

to microphytoplankton (excluding diatoms). This

emphasizes the role of alveolate parasitoids as

top-down effectors of zooplankton and micro-

phytoplankton population structure and func-

tioning (3), although the latter group is also

affected by grazing (1). The meso-planktonic net-

works contain known syndiniales targets (Dino-

phyceae, Ciliophora, Acantharia, and Metazoa)

(Fig. 3B) (56). In large size fractions, we found

interactions between known parasites and groups

of organisms that in theory are too small to be

their hosts (57); 32%of these associations involved

the abundant and diverse marine stramenopiles

(MASTs) and diplonemids (other Discoba and

Diplonema) (10). Ecophysiology studies (58, 59)

suggest a parasitic role for these lineages. The

association of these groups with other parasites

would be explained by putative co-infection of the

same hosts. Contrasting with the above observa-

tions, we found phytoplankton silicifiers (dia-

toms) displaying a variety of mutual exclusions.

One possible interpretation of this is that diatom

silicate exoskeletons (60) and toxic compound

production (49) could act as efficient barriers

against top-down pressures (61).

Phage-microbe associations

We investigated phage-microbe interactions, an-

other major top-down process affecting global

bacterial/archaeal community structure (7). Here,

surface (SRF) and deep chlorophyll maximum

(DCM) virus-bacteria networks revealed 1869 pos-

itive associations between viral populations and

7 of the 54 known bacterial phyla (specifically,

Proteobacteria, Cyanobacteria, Actinobacteria,

Bacteroidetes, Deferribacteres, Verrucomicrobia,

and Planctomycetes), and one archaeal phylum

(Euryarchaeota). These eight phyla represent most

of abundant bacterial/archaeal groups across

37 investigated samples (Fig. 3D), suggesting that

the networks are detecting abundant virus-host

interactions. Additionally, these interactions in-

clude phyla of microbes lacking viral genomes in

RefSeq databases including Verrucomicrobia,

and nonextremophile Euryarchaeota, hinting at

genomic sequences for understudied viral taxa

(Fig. 3E) (39, 62, 63). Among the phage popu-

lations in the network, we found eight corre-

sponding to phage sequences available inGenBank

(>50% of genes with a >50% amino acid identity

match). In all eight cases, the predicted host

from the network corresponded to the anno-

tated host family in the GenBank record, which

is significantly higher than expected by chance

(P = 0.001) (62).

Next, we evaluated viral host range, which is

fundamental for predictive modeling and thus

far largely limited to observations of cultured virus-

host systems that insufficiently map complex

community interactions (64). Our virus-host inter-

action data suggest that viruses are very host-

specific: ~43% of the phage populations interact

with only a single host OTU, and the remaining

57% interact with only a few, often closely related

OTUs (Fig. 3D). These networks are modular at

large scales (65), suggesting that viruses are host

range–limited across large sections of host space.

Nestedness analysis showed inconsistent results

across algorithms.

Microscopic validation of

predicted interactions

Our data predicted a photosymbiotic interaction

between an acoel flatworm (Symsagittifera sp.)

and a green microalga (Tetraselmis sp.). We vali-

dated this by means of laser scanning confocal

microscopy (LSCM), three-dimensional (3D) recon-

struction, and reverse molecular identification on

flatworm specimens isolated from Tara Oceans

preservedmorphological samples.We observedmi-

croalgal cells (5 to 10 mm in diameter) within each

of the 15 isolated acoel specimens (Fig. 4) (66). The

18S sequence fromseveral sortedholobiontsmatched

themetabarcode pair identified in the co-occurrence

global network. Thus,molecular ecology, bioinfor-

matics, and microscopic analysis can enable the

discovery of marine symbioses.

Conclusions

The global ocean interactome can be used to pre-

dict the dynamics and structure of ocean ecosys-

tems. The interactome reported here spans all

three organismaldomains andviruses. The analyses

presented emphasize the role of top-down biotic

interactions in the epipelagic zone. This data will

inform future research to understand how sym-

bionts, pathogens, predators, and parasites interact

with their target organisms and will ultimately

help elucidate the structure of the global foodwebs

that drive nutrient and energy flow in the ocean.

Methods

Sampling

The sampling strategy used in the TaraOceans ex-

pedition is described in (67), and samples used in

the present study are listed in table S1 and http://

doi.pangaea.de/10.1594/PANGAEA.840721. The

Tara Oceans nucleotide sequences are available

at the EuropeanNucleotide Archive (ENA) under

projects PRJEB402 and PRJEB6610.

Physical and environmental measurements

Physical and environmental measurements were

carried out with a vertical profile sampling sys-

tem (CTD-rosette) and data collected from Niskin

bottles. We measured temperature, salinity, chlo-

rophyll, CDOM fluorescence (fluorescence of the

colored dissolved organic matter), particles abun-

dance, nitrate concentration, and particle size

distribution (using an underwater vision profiler).

In addition, meanmixed-layer depth (MLD),maxi-

mum fluorescence, verticalmaximumof theBrünt-

Väisälä Frequency N (s − 1), vertical range of

dissolved oxygen, and depth of nitracline were

determined. Satellite altimetry provided the Okubo-

Weiss parameter, Lyapunov exponent, mesoscale

eddie retention, and sea-surface temperature (SST)

gradients at eddie fronts (19). Data are available

at http://www.pangaea.de (http://doi.pangaea.de/

10.1594/PANGAEA.840718).

Abundance table construction

Prokaryotic 16S rDNA metagenomic reads were

identified, annotated, and quantified from mitags)

as described in (68) by using the SILVA v.115

database (19, 69, 70). The abundance table was

normalized by using the summed read count per

sample (19, 71). Quality-checked V9 rDNA meta-

barcodes were clustered into swarms as in (10, 72)

and annotated by using the V9 PR2 database (73).

PR2 barcodes were associated to fundamental

trophic modes (auto- or heterotrophy) and sym-

biotic interactions (parasitism and mutualism)

according to literature (Taxonomic and trophic

mode annotations are available at http://doi.

pangaea.de/10.1594/PANGAEA.843018 and http://

doi.pangaea.de/10.1594/PANGAEA.843022).Swarm

abundance and normalization was performed as

in (10, 72). Bacteriophage metagenomes were ob-

tained from the < 0.2-mm fractions for 48 samples,

and contigs were annotated and quantified as in

(18). The abundance matrix was normalized by

meansof total sample readcount and contig length.

In all cases, only OTUswith relative abundance

> 1
–8
and detected in at least 20% of samples were

retained. Because sample number in the input

tables ranged from 17 to 63, prevalence thresh-

olds varied (from 22 to 40%). The sum of all fil-

tered OTU relative abundances was kept in the

tables to preserve proportions. Abundance tables
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are available at www.raeslab.org/companion/

ocean-interactome.html.

Random forest-based models

Eukaryotic, prokaryotic, and environmental

matrices were merged into two matrices [deep

chlorophyll maximum layer (DCM) and surface

water layer (SRF)]. For each of the three models

[OTU versus other OTUs (MOTU), environmental

factors (MENV) or combined (MOTU+ENV)], regres-

sions were perfomed with OTU abundance as

dependent and the abundances of other OTUs

or environmental factors as independent varia-

bles. For each regression, up to 20 independent

variables were selected by using the minimum

Redundancy Maximum Relevance (mRMR) filter-

ranking algorithm. Random forest regression (25)

was followed by a leave-one-out cross-validation.

The variable subset with theminimum leave-one-

out NMSE (normalized mean square error) was

selected. To identify the best model for a given

target OTU, the significance of the NMSE differ-

encewas tested on the absolute error values [paired

Wilcoxon test adjusted by Benjamini-Hochberg

false discovery rate (FDR) estimation (74)]. NMSE

computed on random data are larger than those

fromoriginal data. In addition,MENVoutperformed

MOTU when OTU abundances were randomized.

Variance partitioning

Environmental variableswere z score–transformed;

spatial variables (MEM eigenvectors) were cal-

culated based on latitude and longitude (75).

Forward selection (76) was carried out with func-

tion forward.sel in R-package packfor. Signifi-

cance of the selected variables was assessed with

1000 permutations by using functions rda and

anova.cca in vegan. Variance partitioning (77)

was performedby using function varpart in vegan

on Hellinger-transformed abundance data, the

forward-selected environmental variables, and

the forward-selected spatial variables and tested

for significance with 1000 permutations.

Network inference

Taxon-taxon co-occurrence networks were con-

structed as in (78), selecting Spearman and

Kullback-Leibler dissimilarity measures. To com-

pute P values, we first generated permutation

and bootstrap distributions, with 1000 iterations

each, by shuffling taxon abundances and resam-

pling from samples with replacement, respec-

tively. The measure-specific P value was then

obtained as the probability of the null value

(represented by the mean of the permutation

distribution) under a Gauss curve fitted to the

mean and standard deviation of the bootstrap

distribution. Permutations computed for Spearman

included a renormalization step, which mitigates

compositionality bias (ReBoot). Measure-specific

P values were merged by using Brown’s method

(79) and multiple-testing-corrected with Benjamini-

Hochberg (74). Last, edges with an adjusted P

value above 0.05, with a score below the thresh-

olds (30) or not supported by both measures

after assessment of significance, were discarded.

Taxon-environment networks were computed

with the same procedure, starting with 8000 ini-

tial positive and negative edges, each supported by

both methods. For computational efficiency, we

computed 23 taxon-taxon and taxon-environment

networks separately, for two depths (DCM and

SRF), four eukaryotic size fractions (0.8 to 5 mm,

>0.8 mm, 20 to 180 mm, and 180 to 2000 mm) and

their combinations, the prokaryotic size frac-

tion (0.2 to 1.6 mm and 0.2 to 3.0 mm) and its

combination with each of the eukaryotic and

virus (<0.2 mm) size fractions. We then gen-

erated 23 taxon-environment union networks

for environmental triplet detection and merged

the taxon-taxon networks into a global network

with 92,633 edges.

Estimation of false discovery rate

We estimated the FDR of network construc-

tion with two null models. The first shuffles

counts while preserving overall taxon propor-

tions and total sample count sums, but removing

any dependencies between taxa. For the second,
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Fig. 4. Experimental validation of network-predicted interaction (photosymbiosis). Guided by the

predictions from the co-occurrence network and abundance patterns, acoel flatworms (Symsagittifera

sp.) together with their photosynthetic green microalgal endosymbionts (Tetraselmis sp.) were collected

in microplankton samples from Tara Oceans Station 22 in the Mediterranean Sea. Pictures show a 3D

reconstructed specimen from LSCM images [green channel, cellular membranes (DiOC6); blue channel,

DNA and the nuclei (Hoechst33342); red channel: chlorophyll autofluorescence]. (A) Co-occurrence plot

of Symsagittifera- and Tetraselmis-related OTUs along Tara Oceans stations, showing the relatively high

abundance of the holobiont at Station 22. (B) Dorsal view of the entire acoel flatworm specimen (~300 mm).

The epidermis (green) is completely covered with cilia and displays some pore holes. (C) The removal

of the green channel reveals the widespread distribution of small unicellular algae (red areas) inside

the acoel body. The worm’s nuclei display a clear signal (compact round blue shapes), whereas the

algal nuclei are dimmer. A dinoflagellate theca (arrowhead) is located in the central syncytium, likely

indicating predation. (D) Cross-section along a z-y plane allows localization of the algae, beneath the

epidermis in the parenchyma. Only the external cell layer (green signal) from the dorsal view is visible

because of the thickness and opacity of the worm. Scale bar, 50 mm.

TARA OCEANS 



we fitted a Dirichlet-multinomial distribution to

the input matrix using the dirmult package in R

(80) and generated a null matrix by sampling

from this distribution, preserving total sample

count sums. Null matrices were generated from

count matrices (0.8 to 5 mm, 20 to 180 mm, and

180 to 2000 mm eukaryotic and prokaryotic size

fraction as well as bacteriophage-prokaryotic com-

posite, SRF, and DCM). Network construction was

performed with the 20 null matrices and thresh-

olds applied to the original matrices (28). From

edge numbers in the original and the null net-

works, we estimated an average FDR of 9% (28).

Indirect taxon edge detection

For each taxon-environment unionnetwork, node

triplets consisting of two taxa and one environ-

mental parameter were identified. For each trip-

let, interaction information II was computed as

II = CI(X, Y | Z) – I(X, Y), where CI is the condi-

tional mutual information between taxa X and Y

given environmental parameter Z, and I is the

mutual information between X and Y. CI and I

were estimated by using minet (81). Taxon edges

in environmental triplets were considered indi-

rect when II < 0 and within the 0.05 quantile of

the random II distribution obtained by shuffling

environmental vectors (500 iterations). If a taxon

pair was part of more than one environmental

triplet, the triplet with minimum interaction in-

formation was selected.

For each environmental triplet, we also checked

whether its sign pattern (the combination of

positive and/or negative correlations) was con-

sistent with an indirect interaction. From eight

possible patterns, four indicate indirect relation-

ships (for example, two negatively correlated taxa

correlatedwith opposite signs to an environmental

factor).

Network deconvolution (32) was carried out

with b = 0.9. We considered an environmental

triplet as indirect according to network decon-

volution if any of its edges were removed.

All (11,043) negative interaction information

triplets were consistent with an indirect rela-

tionship according to their sign patterns, and a

majority (8209) was also supported by network

deconvolution.

Influence of ocean regions on

co-occurrence patterns

Samples were divided into groups according to

region membership. The impact of each sample

group on the Spearman correlation of each edge

in the network was assessed by dividing the (ab-

solute) omission score (OS) (Spearman correla-

tion without these samples) by the absolute

original Spearman score. To account for group

size, theOSwas computed repeatedly for random,

same-sized sample sets. Nonparametric P values

were calculated as the number of times random

OSs were smaller than the sample group OS, di-

vided by number of random OS (500 for each

taxon pair). Edges were classified as region-specific

when the ratio of OS and absolute original score

was below 1 andmultiple-testing-correctedP values

(Benjamini-Hochberg) were below 0.05.

Overrepresentation analysis

Significance of taxon–taxon counts at high taxo-

nomic ranks was assessed with the hypergeometric

distribution implemented in the R function phyper.

Mutual exclusion versus copresence analysis was

performed by using the binomial distribution im-

plemented in the R function pbinom, with the

background probability estimated by the frequen-

cy of edges in the network.

Oceanic region analysis was also assessed by

use of R’s pbinom function, with the background

probability estimated by dividing total ocean-

specific edge number by total edge number. The

P value was computed as the probability of ob-

taining the observed number of ocean-specific

edges among the edges of a taxon pair. The same

procedure was repeated for each oceanic region

separately, with region-specific success probabil-

ities. Edges classified as indirect were discarded

before the analysis.

In all tests, P values were adjusted for multiple

testing according to Benjamini, Hochberg, and

Yekutieli (BY), implemented in the R function

p.adjust.

Extracting functional groups from the

global plankton interactome

Functional groups consist of a mix of major

monophyletic lineages of parasites, together with

classical polyphyletic PFTs, as defined in (10, 54, 55).

Metabarcodes in the networkwere sorted into 15

parasite groups and seven PFTs (55) according to

their (i) taxonomical classification, (ii) member-

ship in a given size fraction, (iii) trophic mode,

and (iv) biogeochemical role in dimethyl sulfide

(DMS) production or silicification. After mapping

themetabarcodes and their edges onto PFTs and

parasites, edges are weighted by the number of

links they represent. Overrepresentation of the

number of links included in each edge was as-

sessed with the hypergeometric distribution.

Parasite links in large fractions may point

to parasite-host connections. We extracted all

edges in the large fractions (20 to 180 mm and

180 to 2000 mm) between barcodes annotated

as parasites and nonparasitic barcodes. Partners

of parasites comprised potential hosts (Fig. 3B)

but also organisms that are either too small or

without size information. The former may repre-

sent unknown parasites (for example, coinfecting

a host with known parasites), whereas the latter

may represent previously unknown hosts.

Nestedness and modularity analysis

The analysis was carried out for 1869 positively

correlated phage-prokaryotic pairs. Modularity

was computed with the LP (Label propagation)

BRIM algorithm (82) in BiMAT (83) with 100

permutations. Nestedness of the host-phage

network as quantified with the NODF (nested-

ness with overlap and decreasing fill) algo-

rithm (84) in BiMAT with 100 permutations

(preserving edge number and degree distribu-

tion) was significant, but not with the NTC

algorithm (85). We also tested the impact of ran-

dom removal or addition of 5, 10, 15, and 20%

edges. After random addition/deletion of edges,

modularity and nestedness (according to NODF)

remained significant.

Confirmation of predicted

viruses-host associations

Two different approaches were used to con-

firm virus-host associations predicted by the

co-occurrence network. First, the network host

prediction was compared with the “known” host

for viral populations closely related to an iso-

lated virus—populations with more than 50%

of predicted genes affiliated to the same phage

reference genome [based on a BLASTp against

RefseqVirus, threshold of 10
−03

on e-value and

50 on bit score (18)]. Known phages corresponded

to viruses infecting SAR11, SAR116, and Cyano-

bacteria, so that a predicted host was consid-

ered correct if affiliated to Alphaproteobacteria,

Alphaproteobacteria, and Cyanobacteria, respec-

tively [the lowest rank for which there was tax-

onomic assignment for those bacterial OTUs (69)].

This procedure was repeated on 1000 random-

ized networks (with same-degree distribution)

to calculate the significance of the results. Sec-

ond, contigs of putative hosts predicted by co-

occurrence analysis were compared with BLAST

to a set of viral sequences detected in draft and

single-cell genomes with VirSorter (https://pods.

iplantcollaborative.org/wiki/display/DEapps/

VIRSorter+1.0.2). One contig (36DCM_3902) (Fig.

3E) displayed significant sequence similarity

(blastn e-value < 10
−151

over two segments) to

one contig detected in a single-cell genome

(AA160P02DRAFT_ scaffold_31.32). In order to

compare the putative host associated to each contig,

rRNA genes were predicted in the single-cell am-

plified genome (SAG) contigs with meta-rRNA

(86). Sequences were annotated based on BLAST

against the nonredundant (nr) database, and the

comparison plot was generated with Easyfig (87).

Literature-based evaluation of

predicted protist interactions

A panel of four experts, two specialized in the

study of planktonic mutualistic protists (C.d.V.

and J.D.) and two specialized in the study of

planktonic parasitic protists (C. Berney and N.H.),

screened literature looking for symbiotic inter-

actions occurring among eukaryotic plankton.

From this search, they built a list of 574 known

symbiotic interactions sensu lato (parasitism

and mutualism, at least one protist partner) in

marine eukaryotic plankton, covering 197 eu-

karyotic genera, described in 76 publications

since 1971. The experts extracted only symbi-

otic interaction cases described either from

direct observation of both interacting partners

through microscope (45%), sequence from sym-

biont isolated from the observed host (14%), or

both (41%). Direct observation of partners in-

teracting (86%) provides high confidence for

the interaction, and the symbiont sequence al-

lows its taxonomic identification. The protocol

to build the list was the following: (i) the experts

manually screened 3170 publications associated

to each PR2 db sequence http://ssu-rrna.org/pr2

(73); (ii) the experts screened 293 publications
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retrieved from Web of Science with the follow-

ing query: “TOPIC:(plankton* AND (marin* OR

ocean*)) AND (parasit* OR symbios* OR mutua-

lis*)”; (iii) the experts screened GenBank 18S rDNA

sequences of symbionts for which the “host” field

was known. They labeled these interactions as

“Unpublished.” Last, the experts discussed any ob-

served discordance until agreement was reached.

The final table of literature-curated interactions

includes a column indicating the type of evi-

dence gathered about the interaction: 1 for only

getting symbiont sequence, 2 for direct obser-

vation, and 3 for both. Symbiont GenBank host

field belongs to category 1.

Experimental validation

of a predicted interaction

V9 pairs were searched for organisms of suit-

able size in order to allow its isolation from

morphological samples. This way, we targeted

a predicted photosymbiosis between an acoel

flatworm [V9 rDNA metabarcode 83% sim-

ilar to Symsagittifera psammophila (88)] and

a photosynthetic microalga (Tara Oceans V9

metabarcode 100% similar to a Tetraselmis

sp) (89).

Fifteen acoel specimens (hosts) were isolated

from formaldehyde-4% microplankton samples

of station 22 (A100000458), in which both part-

ner OTUs displayed high abundances. Before

imaging, specimens were rinsed with artificial

seawater, then DNA and membrane structures

were stained for 60 min with 10 mM Hoechst

33342 and 1.4 mM DiOC6(3) (Life Technologies,

Grand Island, NY). Microscopy was conducted

by using a Leica TCS SP8 (Leica Microsystems,

Wetzlar, Germany) confocal laser scanning mi-

croscope and a HC PL APO 40x/1.10 W motCORR

CS2 objective. The DiOC6 signal (ex488nm/em500-

520nm) was collected simultaneously with the

chlorophyll signal (ex488nm/em670-710nm), fol-

lowed by the Hoechst signal (ex405 nm/em420-

470nm). Images were processed with Fiji (90),

and 3D specimens were reconstructed with Imaris

(Bitplane, Belfast, UK).

To obtain the sequences of the metabar-

codes of each partner, seven acoels were isolated

from ethanol-preserved samples from station

22 (TARA_A100000451), individually rinsed in

filtered seawater, and stored at –20°C in absolute

ethanol. DNA was extracted with MasterPureTM

DNA/RNA purification kit (Epicenter, Madison,

WI) and polymerase chain reaction amplified by

using the universal-eukaryote primers (forward

1389F and reverse 1510R) from (10). Chlorophyte-

specific primers (Chloro2F: 5′- CGTATATTTAAGTT-

GYTGCAG-3′ and Tetra2-rev 5′- CAGCAATGGGC-

GGTGGC GAAC-3′) were designed to amplify the

microalgae V9 rDNA as in (4). Purified amplicons

were subjected to poly-A reaction and ligated

in pCR®4-TOPO TA Cloning vector (Invitrogen,

Carlsbad, CA), cloned by using chemically compe-

tent Escherichia coli cells, and Sanger-sequenced

with the ABI-PRISM Big Dye Terminator Sequenc-

ing kit (Applied Biosystems, Foster City, CA)

by using the 3130xl Genetic Analyzer (Applied

Biosystems).
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