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Diatoms  contain  a  secondary  plastid  that  derives  from  a  red  algal  symbiont.  This  organelle  is  limited  by
four membranes.  The  two  outermost  membranes  are  the  chloroplast  endoplasmic  reticulum  membrane
(cERM), which  is  continuous  with  the  host  outer  nuclear  envelope,  and  the  periplastidial  membrane
(PPM). The  two  innermost  membranes  correspond  to  the  outer  and  inner  envelope  membranes  (oEM
and iEM)  of  the  symbiont’s  chloroplast.  Between  the  PPM  and  oEM  lies  a minimized  symbiont  cyto-
plasm, the  periplastidial  compartment  (PPC).  In  Phaeodactylum  tricornutum, PPC-resident  proteins
are localized  in  “blob-like-structures”,  which  remain  associated  with  plastids  after  cell  disruption.  We
analyzed disrupted  Phaeodactylum  cells  by  focused  ion  beam  scanning  electron  microscopy,  revealing
the presence  of  a vesicular  network  (VN)  in  the  PPC,  at a  location  consistent  with  blob-like  structures.
Presence of  a  VN  in  the  PPC  was  confirmed  in  intact  cells.  Additionally,  direct  membrane  contacts
were observed  between  the  PPM  and  nuclear  inner  envelope  membrane  at  the  level  of  the  chloroplast-
nucleus isthmus.  This  study  provides  insights  into  the  PPC  ultrastructure  and  opens  perspectives  on

the function  of  this  residual  cytoplasm  of  red  algal  origin.
© 2016  Elsevier  GmbH.  All  rights  reserved.
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Introduction

Diatoms  constitute  a  major group of phytoplankton
in  oceans and freshwater ecosystems,  and are  so
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ecologically  successful that they are responsible
for  up to one fourth of  global  primary productivity
(Field  et al. 1998). Based  on comprehensive sur-
veys  of oceanic biodiversity,  diatoms  are spread
globally  and  are the most  diverse  photosynthetic
eukaryotic  lineage  (de  Vargas  et al.  2015;  Massana
et  al. 2015). A striking feature  of diatoms is their
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sophisticated  ultrastructure,  inside highly  packed
cells,  including  a chloroplast  bounded  by four
membranes,  known as a ‘secondary’ or ‘complex
plastid’.  Our  understanding  of the  structure of this
organelle  and its relationship with the rest of the cell
is  fragmentary. Plastid-mitochondrion  metabolic
interactions  were  recently shown  to optimize  bio-
energetic  coupling,  being  one  of  the reasons  for
diatoms’  performance  in ecosystems  (Bailleul  et al.
2015). The  stroma of diatoms’  chloroplast  is also
the  site of production  of fatty acids, which  are
precursors  for the  biosynthesis  of all membrane
and  storage glycerolipids,  but it is still unknown
how  these  fatty acids and glycerolipids  can traffic
across  and inside subcellular  membranes  to reach
their  final  destination  (Abida  et al. 2015). Important
shuttling  of proteins,  lipids  and other metabolites  is
therefore  expected  to occur through  the four mem-
branes  limiting  the plastid.  Diatom  glycerolipids
are  considered a promising feedstock for biofuels
and  other  lipid-derived chemicals  (Levitan  et  al.
2014). It is therefore essential,  but challenging,  to
advance  knowledge  on the subcellular  organiza-
tion  and connectivity  of  membranes  within  diatom
cells.

The  secondary  plastid derives  from  the engulf-
ment  of a red  alga  by another eukaryotic  cell,
followed  by the  reduction  of the symbiont  subcell-
ular  structures  (Cavalier-Smith 2003; McFadden
2014;  McFadden and van  Dooren  2004;  Nisbet
et  al. 2004). Such  secondary plastids  are  found in
groups  that are distant  from diatoms  (Heterokonta),
like  Cryptophyta,  Haptophyta,  Chromerida  or Api-
complexa  (Cavalier-Smith  2003; Dorrell and Smith
2011;  Gibbs 1962a, b, c,  1979,  1981;  Marechal
and  Cesbron-Delauw  2001; Petroutsos et  al.
2014). Secondary plastids  are therefore chimeric
organelles,  combining  host and symbiont-derived
structures.  The  outermost membrane,  termed
the  ‘chloroplast  endoplasmic  reticulum  membrane’
(cERM,  Fig.  1)  (Gibbs 1979)  is supposed  to derive
from  the host phagocytic  membrane  (Cavalier-
Smith  2003;  McFadden and van Dooren  2004;
Nisbet  et al. 2004) and is therefore expected to
be  phospholipid rich  (Abida et al. 2015; Petroutsos
et  al. 2014). In diatoms,  the cERM is directly
connected  to  the  host outer nuclear  envelope  mem-
brane  (oNE) and  the ER  (Bouck  1969; Kroth  et al.
2008). In other  groups,  like  Apicomplexa,  the cERM
and  the endomembrane  system  are  not continu-
ous  and transfers  of material  occurs via vesicular
trafficking  (Heiny et al. 2014; van Dooren  et al.
2000, 2001). Underneath, the  ‘periplastidial mem-
brane’  (PPM, Fig.  1) is considered to derive  from
the  symbiont  plasma membrane (Grosche  et al.
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Figure  1.  Chimeric  organization  of  the  secondary
plastid in  diatoms.  The  scheme  shows  a  fusiform
cell of  Phaeodactylum.  The  plastid  is  limited  by  4
membranes. The  chloroplast  endoplasmic  reticulum
membrane (cERM),  shown  in  blue,  is  continuous  with
the outer  nuclear  envelope  membrane.  The  periplas-
tidial membrane  (PPM)  is  shown  red.  The  outer  and
inner envelope  membrane  (oEM  and  iEM),  shown  in
light green,  are  tightly  apposed.  The  presence  of  a
specific periplastidial  compartment  (PPC)  is  based  on
the detection  of  blob-like  structures  observed  by  con-
focal microscopy,  in  which  protein  precursors  fused
to GFP  and  crossing  only  the  cERM  and  the  PPM
reside. The  presence  of  a  vesicular  network  (VN)  in
the PPC  is  addressed  here.  C,  chloroplast;  N,  nucleus;
M, mitochondrion.

2014), although  an  alternative  origin from the host
ER  has been  recently proposed  (Gould  et  al.  2015).
The  nature of the two innermost membranes of
the  chloroplast  is not debated,  being  reminiscent
of  the  galactolipid-rich  chloroplast envelope of the
symbiont,  called the  ‘outer’  and ‘inner envelope
membranes’  (oEM  and  iEM, Fig.  1)  (Botte and
Marechal  2014;  Petroutsos et al. 2014).  Between
the  PPM and  oEM lies  a minimized  symbiont
cytoplasm,  the ‘periplastidial  compartment’  (PPC,
Fig.  1)  (Grosche  et al. 2014). The cytoplasmic
remains  of the  red  algal symbiont  show different
degrees  of reduction.  Cryptophytes like Guillardia
theta  contain  a minimized  version of the nucleus
in  the PPC, called the  nucleomorph  (Curtis et al.
2012), whereas  other groups  including diatoms
have  completely  lost the symbiont  nucleus.

Phaeodactylum  tricornutum is  by  far the most
studied  pennate  diatom,  following  the  complete
sequencing  and annotation  of its genome (Bowler
et  al. 2008), the development  of molecular  tools  for
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gene expression  and functional  characterizations
(Apt  et al. 1996; De Riso  et al. 2009;  Falciatore
et  al.  1999; Siaut et al. 2007) and  the  production
of  reference  data for membrane  lipidomic  studies
(Abida  et al. 2015).  P. tricornutum  is pleiomorphic,
with  three  major morphotypes,  i.e.  fusiform (shown
in  Fig.  1), triradiate and oval.  A  series of axenic
strains  have been  collected in various  marine envi-
ronments  worldwide,  including Pt1,  which  has been
analyzed  here (De Martino  et al. 2007). Subcellular
localization  of proteins  in the secondary  plastid  of
P.  tricornutum relies  on confocal  imaging  of cells
expressing  the green fluorescent  protein  (GFP)
fused  to various  addressing sequences  (Gould
et  al. 2006;  Grosche et al. 2014;  Gruber et al. 2007;
Hempel  et al. 2009; Kilian  and Kroth  2005; Moog
et  al. 2011; Peschke  et al.  2013; Sommer et al.
2007).

Most plastid proteins in  P. tricornutum  are  nuclear
encoded:  their  sequences  contain  a bipartite
topogenic  signal (Bts), comprising  an N-terminal
signal  peptide  (Sp),  a chloroplast-like  transit pep-
tide  (Ctp)  and an amino acid motif  at the
cleavage  site of the Sp, termed  the ASAFAP
motif  (Gould  et al. 2006;  Gruber et al.  2007;
Kilian  and  Kroth 2005; Moog et al. 2011). Three
major  translocating  systems  are  involved  to import
plastid  proteins harboring a Bts (Supplementary
Material  Fig.  S1).  Firstly,  a sec61  complex  opera-
tes  by co-translational  mediation  of pre-proteins
across  the  cER  (Bolte  et al. 2009). Secondly, the
symbiont  endoplasmic  reticulum-associated  degra-
dation  (ERAD)  machinery  has evolved  to give rise
to  a translocon  called the ‘symbiont-specific  ERAD-
like  machinery’,  or SELMA  (Felsner  et al. 2011;
Hempel  et al. 2007, 2009; Lau et  al. 2015;  Sommer
et  al. 2007; Stork et  al. 2012, 2013). Thirdly, trans-
port  across the oEM  and  iEM involves components
related  to the classic chloroplast translocon,  i.e.
TOC  and a  TIC  respectively  (Bullmann  et al.  2010;
Heinz  and Lithgow 2014;  Schleiff  and Becker 2011;
Schleiff  et al.  2011; Sommer et al. 2011; Stork et  al.
2013;  Wunder et al. 2007).

Following  docking of ribosomes  at the surface
of  the  secondary plastid,  the Sp  determines  the
targeting  via the cERM  and PPM  (Supplementary
Material  Fig. S1). The presence  of a phenylala-
nine  (F) or  an aromatic residue  at position  +1 of
the  Ctp  determines  the transport  across  the  oEM
and  the  iEM. In the absence of  such aromatic
amino  acid, proteins  remain resident  in the PPC
(Gould  et al. 2006; Gruber et al. 2007;  Kilian  and
Kroth  2005; Moog et al. 2011). A  recent  study has
shown  that  pre-proteins  could  be N-glycosylated

prior their transport through  the  PPM  (Supplemen-
tary  Material Fig.  S1),  probably  by the action of an
oligosaccharide  transferase (OST)  (Peschke et  al.
2013). An important  question is  then posed by
this  discovery, regarding  the  possibility to import
some  of the plastid  proteins,  most  notably folded
glycoproteins,  via  membrane  translocators  or via
unknown  vesicular trafficking  systems.

The evidence for a protein  to reside (or be
blocked)  inside the PPC  lies on  the  detection of
GFP  fusions  inside  single spot-like  structures  at the
periphery  of  the plastid,  called “blob-like-structures’
(Gould  et al.  2006; Gruber et al.  2007; Kilian
and  Kroth  2005;  Moog  et al. 2011). The presence
of  membrane  vesicles in blob-like structures was
considered  as possible  based  on  the arrest of  pro-
tein  import  by treatment  with Brefeldin A (Kilian
and  Kroth 2005), however in following studies, this
hypothesis  was never  confirmed. Consistently with
the  absence of vesicles, no PPC-specific compo-
nent  involved in vesicular  lipid trafficking, such as
Rabs,  SNAREs, COPI, COPII, chlathrin, calveolin,
ESCRT,  GEFs or GAPs could  be predicted (Moog
et  al. 2011).

In a comprehensive electron  microscopy study
of  the chrysomonad  Ochromonas  danica, a vesic-
ular  network (VN) was observed  in the PPC (Gibbs
1979). This  VN has been  initially called a periplas-
tidial  reticulum  (Gibbs 1979). This network did
not  extend  around  the whole chloroplast of O.
danica,  but was found restricted to  particular loca-
tions,  close to the  nucleus  (Gibbs 1979).  Apparent
increase  of  this  VN after treatment  with  cyclo-
heximide  and disappearance  after  treatment  with
chloramphenicol  suggested  a relation  with protein
import  (Gibbs 1979). This study  is often  considered
a  reference  to suggest  that the PPC of diatoms
may  contain a VN, but the  detection  of membrane
translocators  and the lack of putative PPC proteins
acting  in lipid trafficking  have  been  repeatedly used
as  an argument  to consider  the presence of  vesicles
as  unlikely, or generated  by unknown  components
(Gould  et al. 2006;  Moog  et  al.  2011; Peschke et al.
2013;  Sommer et al. 2007). Ultrastructural study
of  chloroplasts  in  diatoms  other  than Phaeodacty-
lum  has supported the existence of a  VN  in the
PPC  (Bedoshvili  et al. 2009), but location  within the
cell  and conservation  in the diatom  phylum have
not  been assessed.  The ultrastructure of the PPC
needs  therefore to be characterized  in P. tricornu-
tum.  We analyzed by electron  microscopy series
of  ultrathin  sections of  P. tricornutum cells, revea-
ling  the presence  of a VN in the PPC,  at a location
corresponding  to blob-like structures.
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Results and Discussion

Since blob-like  structures  remain associated  to
chloroplasts  after  cell disruption  (Kilian  and  Kroth
2005), we took advantage of this  property and ana-
lyzed  by electron  microscopy series  of ultrathin
sections  of  disrupted  P. tricornutum  cells (Fig. 2A,
B).  Series of  thin sections allow  the detection of
membrane  connectivity  in the three dimensions.
Here,  the thickness of section slices was 4 nm,
and  200 to  600 sections were collected  per  sam-
ple,  allowing the  ultrastructure  scanning  of single
organelles  (chloroplast, mitochondrion  or nucleus)
from  tangential  sections (edges) to cross sections
(Fig.  2C).

Focusing on a  disrupted  unpacked cell, the
scanning  of the  region between a  nucleus and
a  secondary plastid  is  shown in Figures 3, 4
and  5. In these  series,  the identity of  the

membranes  is assessed  by the  connectivity  in the
two  dimensions  of  the sections  and the  conser-
vation  from one section  to the  following,  i.e. the
third  dimension.  To help trace membrane identity
and  connectivity  between sections, schematic rep-
resentations  are  also shown: sections  1’, 48’, 140’,
145’,  152’,  178’,  184’ and 208’.

Firstly, Figure  3 shows the most  tangential region
of  the nucleus. Section 1 corresponds  to the  edge of
this  organelle, i.e. a tangential  view of the oNE.  Sec-
tion  16 shows the tangential view of the iNE. The
following  sections,  e.g. 30, 44 or 48, are transverse
views  of the nucleus, containing  the chromatin, and
allowing  the visualization  of  nuclear pores (Fig. 3,
section  48, NP). The  uncondensed  chromatin indi-
cates  that the cell is in  interphase.  In  section 120,
the  cross section  of the nuclear envelope is slightly
irregular  and shows a constricted  area  (Fig. 3,
section  120, dashed circle). In this constricted

Figure  2.  A.  Electron  micrograph  of  an  intact  Phaeodactylum  cell.  B.  Disrupted  cell.  C.  Lateral  view  of  the  serial
scanning method.  Slices  or  section  are  4 nm-thin,  and  allow  the  detection  of  membrane  continuity  between
successive cross  sections.  For  200  sections,  the  depth  of  the  scanning  is  0.8  �m.  In  the  disrupted  cell  shown
in Figures  3,  4 and  5,  the  tangential  view  of  the  nucleus  is  in  section  1,  and  that  of  the  chloroplast  is  in  section
136. C,  chloroplast;  M,  mitochondrion;  N,  nucleus;  Pyr,  pyrenoid;  Thyl,  thylakoids.
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Figure  3.  Serial  electron  micrograph  scanning  of  a  Phaeodactylum  disrupted  cell  at  the  level  of  the  cERM–oNE
isthmus. The  outer  nuclear  envelope  is  shown  in  blue  from  a  tangential  section  (1)  to  the  level  of  sub-spherical
nucleus (48  and  48’),  where  it is lined  with  the  inner  nuclear  envelope  (iNE)  shown  in  purple.  The  nucleus
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Figure  4.  Serial  electron  micrograph  scanning  of  a  Phaeodactylum  disrupted  cell  at  the  level  of  the  iNE-PPM
membrane contact.  The  outer  nuclear  envelope  (oNE)  is  shown  in  blue  in  continuity  with  the  cERM.  The  inner
envelope membrane  (iNE)  is  shown  in  purple  and  gets  in  very  tight  contact  with  the  irregular  periplastidial
membrane (PPM)  (from  142  and  further).  A  vesicular  network  (VN)  fills  the  space  between  the  PPM  and
the two  innermost  membranes  of  the  chloroplast,  the  outer  and  inner  envelope  membranes  (oEM  and  iEM,
respectively), shown  in  light  green.  C,  chloroplast;  M,  mitochondrion;  N,  nucleus;  Thyl,  thylakoids.

➛

then  forms  a  constricted  area  shown  in  dashed  lines  (120).  In  the  vicinity  of  the  chloroplast,  the  oNE  becomes
continuous with  the  chloroplast  endoplasmic  reticulum  membrane  (cERM).  The  edges  of  the  isthmus  are  shown
with arrows.  M,  mitochondrion;  N,  nucleus;  NP,  nuclear  pore.
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Figure  5.  Serial  electron  micrograph  scanning  of  a  Phaeodactylum  disrupted  cell  at  the  level  of  the  periplas-
tidial compartment.  The  outer  nuclear  envelope  (oNE)  is  shown  in  blue  in  continuity  with  the  cERM.  The
inner envelope  membrane  (iNE)  is  shown  in  purple  in  tight  contact  with  the  periplastidial  membrane  (PPM)  at  the
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region  of the nucleus the oNE  is connected  to the
cERM  (Fig.  3, sections 136,  bold  dark  arrows). In
section  140, this oNE-cERM isthmus  gets  larger
(Fig.  3, sections 140, bold dark arrows) and
irregular  tangential sections  of the PPM are  visu-
alized  facing directly  the  iNE. Here, and  in following
sections,  the  oEM and the  iEM appear  as closely
apposed  membranes.

Secondly, Figure  4 shows a focus  in the  region
where  the iNE  faces directly the  PPM. In sections
142,  144  and 145  the PPM  is less irregular  and
shows  an increased  apposition  with the iNE. A
vesicular  network  (VN)  appears  between  the  PPM
and  the oEM/iEM. The  PPM/iNE  membrane  contact
site  expands from  sections  148 to 152,  becoming
as  large  as the oNE-cERM  isthmus.

Thirdly, Figure 5 allows visualizing  the  expan-
sion  of the VN  in regions where  the oEM and
cERM  are  not connected.  From sections 158 to  160
and  162,  the oNE-cERM  isthmus  and the PPM/iNE
membrane  contact  site are  clearly visible, whereas
section  174 shows disconnected  cross  sections
of  the chloroplast  and the nucleus  (Fig. 5, sec-
tions  174,  star). The VN is still  visible, indicating
that  the VN is close, but not strictly dependent
on  the  nucleus-chloroplast  isthmus. In sections
176  and 178,  direct  connections  between  the VN
and  the  PPM  are  visible  (Fig. 5,  section  178/178’,
bold  arrow), whereas  no link between  the VN and
the  oEM could be detected.  The VN is visible in
sections  188,  192 and  is tangentially  observed  in
section  200. Section  208 shows a second  con-
nection  between the  nucleus and the chloroplast
(Fig.  5, section  208/208’,  bold arrows),  but this time
without  any VN.

Thus this  series  illustrates  that  at the  level of a
large  cERM-oNE  isthmus  a PPM/iNE  membrane
contact  site is established  and a  VN appears
between  the PPM and the oEM,  connected  to the
PPM  but  not to the oEM. The VN in the  PPC is
therefore  at  a location  corresponding  to that of  blob-
like  structures  observed  by confocal  microscopy
in  Phaeodactylum  cells broken  by osmotic  shock,
and  initially reported  to possibly contain membrane
vesicles  (Kilian  and Kroth 2005).

Based on  this analysis of disrupted  and unpacked
cells,  we sought  to establish whether  the VN could
be  detected  in intact cells. Figure  6 shows three

examples. In cell 1, the VN  lies within a groove
between  the PPM  and the oEM,  and appears there-
fore  at two opposite  locations  of the  chloroplast
periphery  in the vicinity of the nucleus (Fig.  6A,
sections  203, 320 and  332, black  arrows), in partic-
ular  at  the level of the nucleus-choroplast  isthmus
sections  332,  star).  In cell 2, the VN appears
more  distant from  the  nucleus  (Fig. 6B, sections
235,  330 and  378, black arrow).  In  cell 3, the
VN  appear  close  to the nucleus,  but not  in the
area  where  the  chloroplast-isthmus  occurs. Over-
all,  the  VN is therefore  most often  present close
to  the chloroplast-nucleus  isthmus, where it might
play  a functional  and structural role,  although other
locations  are  possible.  Using the complete set of
sections  of cell 1 (Fig. 6A) we used the volume
viewer  of Fiji  image  analysis tools (Schindelin et al.
2012)  to reconstitute  cross sections  perpendicular
to  the main  axis of the  cell (Fig.  6D). The three-
dimensional  organization  of  the  VN  can thus  be
viewed  in  Supplementary  Data. The  ultrastructure
of  the VN in Phaeodactylum  is therefore  similar
to  that of the  VN observed  in the  Ochromonas,
although  in this chrysomonad, the VN  was  only
located  close  to the nucleus  and appeared  to have
some  direct connection  with  the oEM in addition to
the  PPM  (Gibbs 1979).

We also examined  previously  published Phae-
doctylum  electron  micrographs.  In most  cases, it
is  barely  possible  to identify  the limiting mem-
branes  of  the  chloroplast.  In the in-depth  study
of  dividing  cells published  recently  (Tanaka  et  al.
2015), one can  see in some  of sections, mem-
brane  vesicular  or reticulated  structures in  the
periphery  of the chloroplast, the precise nature of
which  could not  be assessed at that time, and
which  might  be  a VN within the PPC.  In other
diatoms  like Thalassiosira  proshkinae,  Attheya
ussurensis,  Chaetoceros  muelleri, Aullacoseira
baicalensis,  Synedra  acus,  a similar  VN structure
could  be observed  at the periphery  of chloroplasts
(Bedoshvili  et al. 2009). A PPM/iNE  direct contact
could  also be observed  in Thalassiosira proshk-
inae  and Chaetoceros  muelleri (Bedoshvili and
Likhoshvai  2012). Thus,  the organization of the
PPC  characterized here  in Phaeodactylum  is likely
conserved  in both pennate  and centric diatoms.

➛

level  of  the  nucleus-chloroplast  contact  zone.  The  vesicular  network  (VN)  fills  the  space  between  the  PPM  and
outer envelope  membranes  (oEM),  shown  in  light  green.  The  VN  is  also  present  in  regions  where  the  chloroplast
and the  nucleus  are  not  connected  (star  in  174,  and  further).  The  VN  shows  continuity  with  the  PPM  (178)  but
not with  the  oEM.  Additional  direct  connections  between  the  oNE  and  cERM  are  visible  in  regions  where  no
VN can  be  observed  (208).  C,  chloroplast;  M,  mitochondrion;  N,  nucleus;  Thyl,  thylakoids.
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Figure  6.  Serial  electron  micrograph  scanning  of  Phaeodactylum  intact  cells  at  the  level  of  the  periplastidial
compartment. Three  cells  are  shown  (cell  1,  2  and  3)  in  A,  B  and  C.  A  magnified  cross-section  of  cell  1  is
shown in  D,  corresponding  to  the  video  provided  in  supplementary  data.  The  vesicular  network  (VN)  within  the
periplastidial compartment  is  shown  with  arrows.  Ch,  chloroplast;  m,  mitochondrion;  N,  nucleus;  ob,  oil  body.
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Probably the most  important  result  of this study
is  that the  PPC  of diatoms  is not empty. A residual
cytoplasm  exists, containing vesicles.  None of the
proteins  that  were  reported  to reside,  or  possibly
reside,  in the  PPC could be predicted  to act in vesi-
cle  formation, like  SNAREs,  Rabs, COPI,  COPII,
chlathrin,  calveolin,  ESCRT, GEFs  or  GAPS (Moog
et  al. 2011).  The  VN  must therefore  be  generated
by  an  unknown  process.  The  identification  of the
proteins  generating  the VN in the PPC  represents
therefore  an  important challenge  for future  works.

The  glycerolipid  composition  of each of  the
four  membranes  that surround  the plastid is
unknown,  but the present  study will be  also cru-
cial  in future  investigation  related to membrane
lipid  biogenesis.  It is difficult  to speculate  on
the  location of the  classical  lipids found  in the
envelope  of primary  chloroplasts  in secondary  plas-
tids  i.e. galactoglycerolipids  (monogalactosyldia-
cylglycerol,  MGDG  and digalactosyldiacylglycerol,
DGDG),  sulfoquinovosyldiacylglycerol  (SQDG) and
phosphatidyldiacylgycerol  (PG) (Abida  et al. 2015;
Boudiere  et al. 2014;  Petroutsos et al. 2014) or
if  phospholipids  of the ER  or  nuclear envelope
are  also  present  and in the same proportions  in
the  cERM.  Lipid composition  of the PPM could  be
related  to that of  the cERM, by importing phospho-
glycerolipids,  or  to that of the oEM,  by importing
chloroplast  lipids. In photosynthetic  organisms,
it  is usually considered that in  standard  con-
ditions  phospholipids  are  mostly  present  in the
endomembrane  system,  whereas non-phosphorus
glycolipids  are  in the  plastid.  The analysis  of iso-
lated  secondary plastids  has been possible  in
Apicomplexa,  which is non-photosynthetic  and dis-
connected  from  the nucleus (Botte  et al.  2013)
and  in that peculiar  case, presence  of galactoglyc-
erolipids  could not  be shown (Botte et al.  2008,
2013;  Botte  and Marechal  2014),  whereas  plastid
membranes  were clearly  enriched in phospho-
glycerolipids  and  even sterols  (Botte  et al. 2013).
Galactolipids  could  be detected  in the photosyn-
thetically  active  secondary plastid  of a  Chromerida
by  immunofluorescence  confocal  imaging  (Botte
et  al. 2011). The comprehensive  analysis of the
lipidome  of Phaeodactylum  has  shown  the pres-
ence  of MGDG,  DGDG, SQDG  and  even a form
of  SQDG acylated  on its polar  head (Abida  et al.
2015). Based  on our observations,  we specu-
late  that galactoglycerolipids are  present  in the
iEM  and oEM and  that phosphoglycerolipids  and
betaine  lipids are  likely present  in the cERM  and
the  PPM.  Membrane  lipid transfers  might occur at
the  level  of membrane contact  sites, such  as that
observed  here  between the PPM and the IEM,

or via  dedicated platforms, such  as the VN,  or
by  other non-vesicular  systems between  adjacent
membranes.

The  continuity  between  the PPM and the VN  sug-
gests  that  the biogenesis  of the VN  depends on the
PPC  and not on the oEM. A summary of a possible
scenario  for the origin of  the PPM  and VN  is thus
given  in Figure 7. Important  questions raised by
the  present  study  lie in the  molecular organization
and  the function  of the membrane  compartments
we  have unraveled. Are there  structural proteins
involved  in the opening  of a circular  isthmus con-
necting  the oNE  and the cERM? What are the
components  maintaining  the iME and the PPM
closely  apposed  inside the opened oNE-cERM
isthmus?  Is the iME/PPM  membrane  contact  site
involved  in the exchange  of metabolites,  ions,  pro-
teins  or  nucleic  acids?  The plastid of  diatoms seem
to  encode  its required  set of tRNAs  and rRNAs
(Oudot-Le  Secq  et al. 2007), but other transfers
of  RNAs might  occur. Retrograde  signaling from
the  chloroplast  to the nucleus (Lepetit  et  al.  2013)
might  also occur at the level of this chloroplast-
nucleus  isthmus.  What are the proteins  involved in
the  elaboration  of the VN?  How are  the PPM and
VN  physically connected?  What  is the function of
the  VN? The  VN could be  an  important  platform
for  the  import  of some  protein  precursors, most
importantly  those that  are  folded and glycosylated
after  crossing the cERM and  PPM (Peschke et al.
2013). Protein transport  from the VN  to the oEM
would  therefore  need  a non-vesicular  process. This
study  provides therefore novel insights  into  the  PPC
ultrastructure,  opening  fascinating perspectives to
comprehend  the origin of the secondary  plastid in
diatoms,  its protein  and membrane  lipid biogene-
sis  and its sophisticated relationship  with other cell
compartments.

Methods

Phaeodactylum  tricornutum  cultivation:  The  Pt1  Phaeo-
dactylum  tricornutum  strain  (CCAP  1055/3)  was  obtained  from
the Culture  Collection  of  Algae  and  Protozoa,  Scottish  Marine
institute,  UK.  The  culture  was  grown  in  exponential  phase  in
ESAW (Enriched  Seawater,  Artificial  Water)  medium,  using
50 mL  single-use  flasks  with  100  rpm  shaking  (Certomat  BS-
1 incubator;  Sartorius  stedim  biotech),  a  low  light  intensity  of
20 �mol  photon  m−2.s−1 and  a  12/12  hour  light/dark  photope-
riod at  19 ◦C.

Sample  preparation  for  electron  microscopy:  Cells  of  P.
tricornutum  were  harvested  at  late  logarithmic  phase  (2.106

cells/mL)  before  the  offset  of  the  light  period  at  5000  x  g,  10  min,
4 ◦C.  Cells  were  then  fixed  in  0.1  M  cacodylate  buffer  (Sigma-
Aldrich),  pH  7.4,  containing  2.5%  glutaraldehyde  (TAAB),  2%
formaldehyde  (Polysciences)  for  1  h  at  room  temperature  and
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Figure  7.  Stepwise  reduction  of  the  symbiont  cytosol
following secondary  endosymbiosis  in  the  diatom
lineage. A.  The  host  cell  and  red  algal  symbiont.
B. Engulfment  of  the  red  alga.  C.  Residence  and
transmission  of  the  red  alga  within  the  phagotrophic
membrane.  D.  disappearance  of  symbiont  organelles,
including  the  nucleus,  and  cytosolic  structures.  E.
Present status.  C,  chloroplast;  cERM,  chloroplast
endoplasmic  reticulum  membrane;  iEM,  inner  enve-
lope membrane;  iNE,  inner  nuclear  envelope;  M,
mitochondrion;  N,  nucleus;  oEM,  outer  envelope
membrane;  oNE,  outer  nuclear  envelope;  PPC,
periplastidial  compartment;  PPM,  periplastidial  mem-
brane; Thyl,  thylakoid,  VN,  vesicular  network.

prepared  according  to  a  modified  protocol  from  T.  J.  Deerinck
(http://ncmir.ucsd.edu/sbem-protocol).

Focused  ion  beam  –  scanning  electron  microscopy  (FIB-
SEM):  Focused  ion  beam  (FIB)  tomography  has  been  realized
in a  Zeiss  NVision  40  dual-beam  microscope.  In  this  tech-
nique, the  Durcupan  embedded  cells  of  P.  tricornutum  were  cut
in cross-section,  slice  by  slice,  with  a  Ga+  ion  beam  (of  700
nA at  30  kV),  and  each  slice  was  imaged  in  scanning  electron
microscopy  (SEM)  at  5  kV  using  the  in-column  EsB  back-scatter
detector.  For  each  slice,  a  thickness  of  4  nm  has  been  removed,
and the  SEM  images  are  recorded  with  a  pixel  size  of  4  nm.
The image  stack  is  then  registered  by  cross-correlation  using
the StackReg  plugin  in  the  Fiji  software.  This  procedure  gives
us directly  an  image  the  3D  structure  of  the  sample  with  an
isometric  voxel  size  of  4x4x4  nm3.
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