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Summary

High-throughput sequencing of Prasinovirus DNA
polymerase and host green algal (Mamiellophyceae)
ribosomal RNA genes was used to analyse the diver-
sity and distribution of these taxa over a ∼10 000 km
latitudinal section of the Indian Ocean. New viral and

host groups were identified among the different
trophic conditions observed, and highlighted that
although unknown prasinoviruses are diverse, the
cosmopolitan algal genera Bathycoccus, Micromonas
and Ostreococcus represent a large proportion of the
host diversity. While Prasinovirus communities were
correlated to both the geography and the environ-
ment, host communities were not, perhaps because
the genetic marker used lacked sufficient resolution.
Nevertheless, analysis of single environmental vari-
ables showed that eutrophic conditions strongly
influence the distributions of both hosts and viruses.
Moreover, these communities were not correlated, in
their composition or specific richness. These obser-
vations could result from antagonistic dynamics,
such as that illustrated in a prey–predator model,
and/or because hosts might be under a complex set
of selective pressures. Both of these reasons must be
considered to interpret environmental surveys of
viruses and hosts, because covariation does not
always imply interaction.

Introduction

Microbes are the most abundant organisms in the sea,
where they shape the structure and function of ecosys-
tems (Azam et al., 1983), but they are still one order of
magnitude less abundant than microbe-infecting viruses
(Suttle, 2005). Viruses are thus important players in
microbial mortality and strongly influence biogeochemical
cycles and the structure of host communities (Proctor and
Fuhrman, 1990; Gustavsen et al., 2014). Marine microbes
and their associated viruses are thought to have high
dispersal capacities because of their abundance, (Finlay,
2002; Angly et al., 2006), although community composi-
tion might differ according to environmental conditions
(Angly et al., 2006; Martiny et al., 2006).

However, little is known concerning the environmental
factors that best explain their distribution and whether
host and virus communities are correlated. To answer
these questions, this study focuses on the genus
Prasinovirus, a member of the Phycodnaviridae family
(Wilson et al., 2009) that infect an abundant and
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widespread picoeukaryotic algal class referred to as the
Mamiellophyceae (Marin and Melkonian, 2010). Known
Prasinovirus host species include the three dominant
genera Bathycoccus, Micromonas and Ostreococcus,
infected respectively by Bathycoccus viruses (BpV),
Micromonas viruses (MpV) and Ostreococcus viruses
(OV). Several species have been described for each host
genus (Marin and Melkonian, 2010; Piganeau et al.,
2011b) that might be adapted to different environments.
For example, Ostreococcus species might contain differ-
ent ecotypes adapted to different light intensities
(Rodriguez et al., 2005). Prasinoviruses are large, double-
stranded DNA viruses and form a monophyletic group
within the Phycodnaviridae family (Bellec et al., 2009).
They are also abundant and widespread (Short and Short,
2008; Bellec et al., 2010; Park et al., 2011; Hingamp et al.,
2013; Zhong and Jacquet, 2014). Previous studies sug-
gested that both Prasinovirus and Mamiellophyceae have
high dispersal capacities (Slapeta et al., 2006; Bellec
et al., 2010) and that occurrence of genotypes is related to
environmental conditions (Lepère et al., 2009; Bellec
et al., 2010). However, culture-dependent methods were
mainly used to study these groups so far, with no overview
at the scale of communities.

The occidental part of the Indian Ocean was chosen
for this analysis. This large region is affected
disproportionally by global warming, because modelling
and recent observations revealed a substantial tempera-
ture increase in the upper 700 m of the Indian Ocean (Lee
et al., 2015), driving El Niño/Southern Oscillation cycles
and climate change. Warm waters arriving on the Equa-
torial Currents from around Malaysia and Western Aus-
tralia drive the warm Agulhas current southward along the
East African coast, that in turn meets colder water from
the South Atlantic and Benguela currents in an upwelling
area. Thus this region provided contrasting conditions well
suited for our objectives: (i) to describe the diversity of
prasinoviruses and Mamiellophyceae at a community
scale using a culture-independent sequencing approach,
(ii) to disentangle the influence of the geographical and
the environmental variables and (iii) to determine whether
host and viral communities are correlated. We hypoth-
esized that dispersal capacities of these communities are
not limited within this oceanic region, but that composi-
tions are highly constrained by the environment. Further-
more, Prasinovirus distribution might be strongly
correlated to host communities, because their own repli-
cation depends on the cellular machinery.

Results and discussion

From oligotrophic to eutrophic samples

The 11 samples came from eight stations in the occidental
part of the Indian Ocean (Fig. 1). Most samples were

taken from the surface, but three came from the deep
chlorophyll maximum; stations 58, 65 and 66. The sam-
pling sites and the environmental variables are described
in detail as supplementary information for methods. The
first component of principal component analysis for the 11
samples (Fig. 2) divides them mainly according to poten-
tial temperature, oxygen and density (Table S1). Beam
attenuation and backscattering coefficient of light by par-
ticles are both proxies of the particle load of seawater
(e.g. Neukermans et al., 2012) and contributed to build
the second component such as heterotrophic bacteria,
which divide stations 36, 38, 39, 46, 66 from 57, 58, 65.
This ordination highlighted high variability of environmen-
tal conditions, from oligotrophic (57, 58) to mesotrophic
(36, 38, 39, 46, 65) and eutrophic (66). Stations 57 and 58
were located in the Mozambique channel, an oligotrophic
area (Lévy et al., 2007; Leal et al., 2009), and contained
low concentrations of particles and heterotrophic bacteria,
which are more abundant in higher nutrient situations
(e.g. Thingstad et al., 2008). In contrast, station 66 was
particularly different from the other samples, probably
because it was sampled within an area of high primary
production (Villar et al., 2015) due to upwelling from the

Fig. 1. Locations of sampling sites. Numbers in station names are
in chronological order. Seawater samples were collected on the
schooner Tara at two depths: surface (SUR) and deep chlorophyll
maximum (DCM). Free Prasinovirus particles and Mamiellophyceae
were sampled using 0.1 and 0.8 μm filters respectively. ●,
Prasinovirus; ○, Mamiellophyceae. Arrows indicate known water
currents (adapted from Boebel et al., 1998).
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Benguela, South Atlantic and Agulhas currents (Fig. 1;
Summerhayes et al., 1995; Boebel et al., 1998;
Lutjeharms et al., 2000). Station 66 was characterized by
motion of dense, cooler and nutrient-rich water towards
the surface that increased the concentration of oxygen
through enhanced photosynthetic activity. Notably, this
station contained among the highest concentrations of
chlorophyll a and photosynthetic picoeukaryotes
(Table S2).

Uncultured prasinoviruses were very diverse

Although the Prasinovirus sequences are available for the
11 samples, the data for Mamiellophyceae concern six
samples from four stations (Fig. 1). The sampling strategy
is described in detail as supplementary information for
methods, including the number of sequences, genotypes
and Operational Taxonomic Units (Tables S3 and S4). To
describe virus and host diversity of this oceanic region,
phylogenetic reconstructions (Figs 3 and 4) and
sequence annotations of viral DNA polymerase and host
green algal RNA ribosomal (18S) genes were performed
(see supplementary information for methods, Figs S1–S3,
Table S5). Known host species of prasinoviruses are all
species within dominant genera of the order Mamiellales
(Bellec et al., 2009; Marin and Melkonian, 2010; reviewed
in Grimsley et al., 2012). However, the culture-
independent approach used here highlighted that
although BpV and MpV were the richest groups, OV was
only the seventh richest, and that unknown Prasinovirus

contributed a high proportion of the diversity (OTU7,
OTU11, OTU15 and OTU39; Fig. 3 and Fig. S2).

In contrast, the diversity of the Mamiellophyceae was
consistent with previous studies; Bathycoccus,
Micromonas and Ostreococcus were the most abundant
(Fig. S3) (Not et al., 2004; Viprey et al., 2008). Notably,
Bathycoccus and Ostreococcus were found in higher pro-
portions in this region, whereas Micromonas dominated
the eukaryotic picoplankton in the English Channel (Not
et al., 2004) and at a Mediterranean Sea coastal site (Zhu
et al., 2005). This composition was nevertheless realistic,
because the genus Ostreococcus can dominate
picoeukaryote communities: it is known to form blooms
(O’Kelly et al., 2003; Treusch et al., 2012) and can con-
tribute to up to 70% of the phototrophic picoeukaryotes
(Countway and Caron, 2006). Moreover, phylogenetic
reconstruction of Mamiellophyceae sequences also high-
lighted a new environmental clade related to Crustomastix
and Dolichomastix [Fig. 4 box with dashed lines (OTUs
were defined for a nucleotide identity of 95% instead of
97% to produce a clearer tree) and Table S6]. Remark-
ably, a few related sequences were found in samples from
a deep-sea methane cold seep (Takishita et al., 2007), the
sediment of a hydrothermal vent (Edgcomb et al., 2011),
and in gut content of a bivalve (Duplessis et al., 2004).

Most unknown prasinoviruses might infect
Dolichomastigales

Only representatives of BpV, MpV and OV are so far
available in culture (Cottrell and Suttle, 1995; Derelle

Fig. 2. Principal component analysis of the 11 samples according to the environmental variables.
A. Distances between samples.
B. Correlations between variables. Numbers in station names are in chronological order. SUR, surface; DCM, deep chlorophyll maximum. The
following environmental variables were measured by the CTD (Conductivity/Temperature/Depth): salinity (g L−1), potential temperature (°C; i.e.
pressure-corrected temperature), density (kg/m−3), oxygen (μmol kg−1), chlorophyll a (Chla; mg Chl m−3), backscattering coefficient of light by
particles (bbp; 470 nm; m−1) and beam attenuation (m−1). Moreover, flow cytometry was used to estimate concentrations of Prochlorococcus,
Synechococcus, heterotrophic bacteria (Het_Bact), picoeukaryotes (Peuk; ml−1), the proportion of high-nucleic acid bacteria (HNA) and of
small picoeukaryotes (Peuk1; putative Mamiellophyceae).
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Fig. 3. Phylogenetic tree of environmental OTUs and 23 reference sequences of Prasinovirus and Chlorovirus, reconstructed using Bayesian
inference. PCR amplifications, sequencing and sequence cleaning were performed such as described in Clerissi et al. (2014a). OTUs are
defined for a nucleotide identity of 90%. Phylogenetic reconstructions were based on DNA sequences that were partitioned according to
codon position, and the estimation of model parameters was unlinked across partitions. Bayesian analysis was carried out with MrBayes 3.2
(Ronquist et al., 2012), with four chains of 2 000 000 generations, trees sampled every 1000 generations and burnin value set to 20% of the
sampled trees. The tree was rooted using the chloroviruses. Numbers are posterior probabilities (%) reflecting clade support. Twenty-three
reference sequences representing 475 Prasinovirus and Chlorovirus isolates for an OTU cutoff of 90% are indicated by an asterisk. Four
abundant but unknown OTUs are indicated by a lozenge. The cultured Prasinovirus-containing clade is indicated by an arrow.
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Fig. 4. Phylogenetic tree of environmental OTUs and 16 reference sequences of Mamiellophyceae, reconstructed using Bayesian inference.
PCR amplifications of V9 region of the 18S were conducted using the PCR primers 1389f (5′-TTG TAC ACA CCG CCC-3′) and 1510r (5′-CCT
TCY GCA GGT TCA CCT AC-3′). Amplicons were sequenced using Illumina, sequences were cleaned and chimeras were removed using
USEARCH (Edgar, 2010). Phylogenetic reconstructions were based on DNA sequences, with an evolutionary model selected via Akaike
information criterion and jModelTest v2 (Darriba et al., 2012). Bayesian analysis was carried out with MrBayes similarly to Prasinovirus. The
tree was rooted using Monomastix strains. Numbers are posterior probabilities (%) reflecting clade support. Sixteen reference sequences
representing Mamiellophyceae diversity (Marin and Melkonian, 2010) for an OTU cutoff of 97% are indicated by an asterisk. The known
Prasinovirus host-containing clade is indicated by an arrow and a new environmental clade is outlined in a box with dashed lines.
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et al., 2008; 2015; Bellec et al., 2009; Weynberg et al.,
2009; 2011). This lack of virus cultures for other genera
might be biased, because mostly coastal areas were
sampled using cultures of coastal algal strains, whereas
Mamiella, Crustomastix and Dolichomastix were more
commonly represented in oligotrophic waters (Viprey
et al., 2008). Because unknown Prasinovirus genotypes
were very rich in our dataset (particularly OTU7, OTU11,
OTU15 and OTU39; Fig. S2), the prediction of host iden-
tities was carried out.

First, a canonical correspondence analysis (CCA) high-
lighted that two Mamiellophyceae OTUs were correlated
to the distribution of Prasinovirus: OTU28 and OTU126
(P-value = 0.005). These two OTUs belong to the robust
clade described above using the phylogenetic analysis
(Fig. 4). A BLASTn search against the National Center for
Biotechnology Information (NCBI) nucleotide collection
suggested that they are most similar to Crustomastix
stigmatica (Table S7), and these sequences came mostly
from stations 36 and 38 where they represent ∼14% of
genotypes compared with an average of 2% in other
samples.

Secondly, because Prasinovirus are mainly genus spe-
cific (Clerissi et al., 2012; Bellec et al., 2014), a
co-distribution analysis was computed using genus anno-
tation for Mamiellophyceae and the Prasinovirus annota-

tion (Fig. 5, Fig. S2, Table S5). While Ostreococcus and
Bathycoccus displayed a homogeneous distribution within
the six samples, the correspondence analysis shows
similar distributions for (i) Micromonas and OV in station
66, (ii) OTU7, OTU26, Mamiellaceae_unknown and
Dolichomastix in station 65 and (iii) OTU11, OTU14,
OTU15, OTU58, Crustomastix, Mantoniella_unknown and
Dolichomastigales_unknown in stations 36 and 38.
However, only the link between Dolichomastigales_
unknown and OTU11 was significant (r = 0.99; P-value =
0.01). Thus both analyses suggested that uncultured
Prasinovirus groups possibly infected Mamiellophyceae
strains from the Dolichomastigales order.

The distribution of communities is influenced mainly by
trophic conditions

Given the results of previous studies (Slapeta et al., 2006;
Lepère et al., 2009; Bellec et al., 2010; Clerissi et al.,
2014b), links with environmental conditions were
expected, but not with geographical distances (locations)
for both communities in this oceanic region.

First, Prasinovirus were correlated to both locations
(Mantel test, r = 0.722, P-value = 0.001) and environment
(Mantel test, r = 0.626, P-value = 0.001) (see supplemen-
tary information for methods, with details about the statis-

Fig. 5. Correspondence analysis of the relative abundance matrix for Prasinovirus and Mamiellophyceae. Clustering analyses with reference
sequences were computed to annotate Prasinovirus OTUs and Mamiellophyceae genotypes at the genus level.
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tical and multivariate procedures). This spatial structure
was surprising, because no links were observed between
genetic distances of Ostreococcus lucimarinus viruses
and sampling locations at a global scale (Bellec et al.,
2010; Derelle et al., 2015). However, locations and envi-
ronment were also correlated in our dataset (Mantel test,
r = 0.521, P-value = 0.001), and no differences were
found between the genotypic structures of Prasinovirus
communities in the 11 samples (P-test, P-value = 1).
These observations might indicate a key role of the envi-
ronment, and that Prasinovirus were actually dispersed in
the occidental part of the Indian Ocean.

Secondly, significant links for the Mamiellophyceae
communities were not found using Mantel tests (location:
r = 0.275, P-value = 0.141; environment: r = 0.342,
P-value = 0.092). This lack of correlations could be the
result of a low statistical power, because the dataset con-
tains six samples, but such correlations were still signifi-
cant for Prasinovirus communities when using the same
reduced dataset (location: r = 0.852, P-value = 0.003;
environment: r = 0.771, P-value = 0.004). Hence,
Mamiellophyceae might be highly dispersed and homo-
geneously distributed in this region.

However, to further decipher the influence of environ-
mental variables on both communities, CCAs were com-
puted with a forward-selection procedure. This analysis

highlighted (i) that potential temperature, density and
beam attenuation constrained Prasinovirus distribution in
the 11 samples (P-value = 0.005) (Fig. 6; a similar trend
was observed for the reduced dataset of six samples,
Fig. S4) and (ii) that potential temperature influenced
Mamiellophyceae in the six samples (P-value = 0.015).
Because potential temperature and density tend to sepa-
rate station 66 from the other samples for both analyses,
the eutrophic conditions of station 66 seem to highly con-
strain communities of this host–virus system.

Few links between Prasinovirus and Mamiellophyceae
communities

Because Prasinovirus entirely depend on hosts for their
replication, a strong correlation between both commu-
nities was expected, but links were significant neither for
community compositions (r = 0.397, P-value = 0.172)
(Table 1) nor for specific richness (Spearman correlation,
ρ = 0.6, P-value = 0.242). This lack of correlation can be
explained by at least three hypotheses: (i) a poor resolu-
tion of membership content of both viral and host commu-
nities according to different unknown biases (DNA
extraction, polymerase chain reaction, sequencing), (ii) a
non-corresponding taxonomic threshold between viruses
and hosts and (iii) antagonistic oscillations between hosts
and viruses.

Fig. 6. Canonical correspondence analysis of the 11 samples on Prasinovirus assemblages constrained by environmental data. Numbers in
station names are in chronological order. SUR, surface; DCM, deep chlorophyll maximum. OTUs are defined for a nucleotide identity of 90%.
Only the significant variables are shown (i.e. variables that significantly explained changes in the distribution of OTU). They were selected
using a forward-selection procedure associated to the canonical correspondence analysis.
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A non-corresponding taxonomic threshold might result
from an overestimation of Prasinovirus diversity and/or an
underestimation of host diversity. On one hand, because
the environmental diversity of prasinoviruses was not
known, their phylogenetic limit was defined arbitrarily by
the Chlorovirus sister clade (see supplementary informa-
tion for methods). In addition, it is possible that the thresh-
olds used to define virus and host OTUs did not
correspond to the taxonomic interaction and that not
all were able to infect Mamiellophyceae. On the other
hand, some evidence suggests that host diversity is
underestimated when using the 18S as genetic marker
(Piganeau et al., 2011a), especially because strains with
identical sequences display different susceptibilities to
prasinoviruses (Clerissi et al., 2012).

Antagonistic oscillations between hosts and viruses are
also a plausible source of noise for correlation analyses.
Indeed, viruses might shape the structure of host commu-
nities via the top-down elimination of different members
(Thingstad and Lignell, 1997; Winter et al., 2010). They
can terminate blooms of hosts and be present when hosts
are not (Bratbak et al., 1993; Schroeder et al., 2003). As a
consequence, an increasing abundance of viral geno-
types is expected to be associated with a decrease of
their specific hosts. However links are not necessarily
linear and can be complex because host ranges vary
widely, for example (Winter et al., 2010). Because free
viral particles were sampled independently of host cells
(fraction below 0.2 μm for viruses), it is tempting to specu-
late that the antagonistic dynamics observed is a likely
hypothesis to explain the lack of correlations between
Prasinovirus and Mamiellophyceae communities in this
study. In particular, OV were mainly found in station 66
with Micromonas (Fig. 5). Their occurrence suggests a
bloom of the genus Ostreococcus before an algal succes-
sion dominated by Micromonas.

Lastly, while viruses mainly depend on the presence of
hosts and on factors involved in their decay, hosts must
face not only bottom-up (nutrients) and top-down factors
(viruses and grazers such as ciliates and flagellates), but
also sideways controls such as competition for nutrients

against other algae and heterotrophic bacteria (e.g.
Thingstad et al., 2008). Thus, host occurrence depends
on a complex set of selective pressures, and this might
explain absence of correlations for Mamiellophyceae
communities with viruses and environments in this study.

To conclude, Prasinovirus and Mamiellophyceae com-
munities were compared in the west part of the Indian
Ocean, and the results suggest that trophic conditions
influenced their distribution. Until now, known
Prasinovirus were characterized mainly in samples from
eutrophic waters, but here we showed that related com-
munities also occur in nutrient-limited waters and that
unknown genotypes possibly infect Dolichomastigales.

In addition, geographic barriers seemed inexistent for
viruses and hosts in this region, and taxa represented in
each sample probably arose from growth of adapted
genotypes before further dispersal. Our analysis also
highlighted that host–virus interactions in natural environ-
ments can be difficult to study because these partners
may follow complex antagonistic dynamics. Hence, future
projects should focus on temporal analyses of specific
sites or use a unique sampling strategy that describes
both viruses and hosts (e.g. cell sorting using flow
cytometry or sampling through 0.8 μm filters).

Finally, the link between Prasinovirus communities and
the environment suggested the presence of different
propagation strategies, such as described for OtV2, a
virus that infects the low-light adapted Ostreococcus tauri
strain and that contains specific genes certainly acquired
laterally (Weynberg et al., 2011). This observation leads
to exciting new questions from an evolutionary point of
view: do Prasinovirus genomes contain adaptive genes to
promote infections of their hosts in different trophic con-
ditions? If so, are they acquired by lateral transfers from
hosts or other viruses during coinfection events?
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Fig. S1. Mamiellophyceae annotation. The clustering corre-
sponds to the presence/absence of reference sequences in
OTUs for different nucleotide identities (Jaccard index;
unweighted pair group method with arithmetic mean). The
name of each strain is followed by its accession number.
Fig. S2. Rank abundance of the Prasinovirus genotypes in
the 11 samples. OTUs are defined for a cutoff of 74%.

Fig. S3. Annotation and rank abundance of the
Mamiellophyceae genotypes in six samples. A–E correspond
to the clades defined in Marin and Melkonian (2010). Only
sequence-containing taxa are shown.
Fig. S4. Canonical correspondence analysis of the six
samples on Prasinovirus assemblages constrained by envi-
ronmental data. Numbers in station names are in chronologi-
cal order. SUR, surface; DCM, deep chlorophyll maximum.
OTUs are defined for a nucleotide identity of 90%. Only the
significant variables are shown.
Fig. S5. Canonical correspondence analysis of the six
samples on Mamiellophyceae assemblages constrained by
environmental data. Numbers in station names are in chrono-
logical order. SUR, surface; DCM, deep chlorophyll
maximum. OTUs are defined for a nucleotide identity of 97%.
Only the significant variable is shown.
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nucleotide identity of 74%. OTU representative sequences
were compared with the NCBI database via BLASTn
searches.
Table S6. Annotation of Mamiellophyceae sequences
belonging to the robust but unknown clade. OTU representa-
tive sequences were compared with the NCBI database via
BLASTn searches.
Table S7. Annotation of Mamiellophyceae OTUs constraining
Prasinovirus distribution using CCA.
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